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a b s t r a c t

A new recursive procedure to compute the Zassenhaus formula up to high order is presented, providing
each exponent in the factorization directly as a linear combination of independent commutators and thus
containing theminimumnumber of terms. The recursion can be easily implemented in a symbolic algebra
package and requires much less computational effort, both in time and memory resources, than previous
algorithms. In addition, by bounding appropriately each term in the recursion, it is possible to get a larger
convergence domain of the Zassenhaus formula when it is formulated in a Banach algebra.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Products of exponentials of non-commuting indeterminate
variables are of fundamental importance in physics and mathe-
matics. As is well known, the Baker–Campbell–Hausdorff theorem
states that eXeY = eZ , with

Z = log(eXeY ) = X + Y +

∞
m=2

Zm(X, Y ). (1.1)

Here Zm(X, Y ) is a homogeneous Lie polynomial in the non-
commuting variables X and Y . In other words, Zm is a linear
combination (with rational coefficients) of commutators of the
form [V1, [V2, . . . , [Vm−1, Vm] . . .]] with Vi ∈ {X, Y } for 1 ≤ i ≤ m.
We recall that [X, Y ] ≡ XY − YX . The first terms in the series (1.1)
read explicitly

Z2 =
1
2
[X, Y ], Z3 =

1
12

[X, [X, Y ]] −
1
12

[Y , [X, Y ]],

Z4 =
1
24

[X, [Y , [Y , X]]].

The expression eXeY = eZ is then properly called the
Baker–Campbell–Hausdorff formula (BCH for short) and plays
a fundamental role in many fields of mathematics (the the-
ory of linear differential equations [1], Lie groups [2], numer-
ical analysis [3]), theoretical physics (perturbation theory [4],

∗ Corresponding author.
E-mail addresses: Fernando.Casas@uji.es (F. Casas), Ander.Murua@ehu.es

(A. Murua).

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.06.006
QuantumMechanics [5], StatisticalMechanics [6,7], quantumcom-
puting [8]), control theory (analysis and design of nonlinear con-
trol laws, nonlinear filters, stabilization of rigid bodies [9]), etc.
(see [10] for a comprehensive treatment of the algebraic aspects
of the BCH formula).

Although the BCH theorem establishes the precise algebraic
structure of the exponent Z in (1.1), it does not provide simpleways
to compute explicitly this series. As amatter of fact, the problem of
effectively computing the BCH series up to arbitrary degree has a
long history, and different procedures have been proposed over the
years, starting with the work of Richtmyer and Greenspan in 1965
(see [11] for a review). Most of the procedures lead to expressions
where not all the iterated commutators are linearly independent
(due to the Jacobi identity and other identities appearing at
higher degrees). Equivalently, the resulting expressions are not
formulated directly in terms of a basis of the free Lie algebra
L(X, Y ) generated by the symbols X and Y . Of course, it is always
possible to write these expressions in terms of a basis, but this
rewriting process is time consuming and requires considerable
memory resources. In addition this is made more difficult due to
the exponential growth of the number of terms with the degree
m. Recently, a new efficient algorithm has been proposed which
allows one to get closed expressions for Zm up to a very high degree
in terms of both the classical Hall basis and the Lyndon basis of
L(X, Y ) [11].

In the paper dealing with the expansion bearing his name,
Magnus [1] cites an unpublished reference by Zassenhaus,
reporting that there exists a formula which may be called the
dual of the (Baker–Campbell–)Hausdorff formula. This result can
be stated as follows.
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Theorem 1.1 (Zassenhaus Formula). Let L(X, Y ) be the free Lie
algebra generated byX andY . Then, eX+Y can be uniquely decomposed
as

eX+Y
= eXeY

∞
n=2

eCn(X,Y )

= eXeYeC2(X,Y )eC3(X,Y ) . . . eCn(X,Y ) . . . , (1.2)

where Cn(X, Y ) ∈ L(X, Y ) is a homogeneous Lie polynomial in X and
Y of degree n.

The existence of such a formula is an immediate consequence
of the BCH theorem. In fact, it is clear that e−XeX+Y

= eY+D, where
D involves Lie polynomials of degree > 1. Now e−YeY+D

= eC2+D̃,
where D̃ involves Lie polynomials of degree > 2 and the process is
repeated again. Induction allows one to get the general result.

By comparing with the BCH formula it is possible to obtain the
first terms of the formula (1.2) as

C2(X, Y ) = −
1
2
[X, Y ],

C3(X, Y ) =
1
3
[Y , [X, Y ]] +

1
6
[X, [X, Y ]].

Although less familiar than the BCH formula, the Zassenhaus
formula constitutes nevertheless a standard tool in several fields,
since the disentangling of the exponential of the sum of two
non-commuting operators into an (in general infinite) product of
exponential operators arises for instance in statistical mechanics,
many-body theories, quantum optics, path integrals, q-analysis in
quantum groups, etc. [12]. Also in particle accelerators physics,
Dragt and his collaborators have used the Zassenhaus formula to
compute the relevant maps both in Taylor and factored product
form [13]. In yet another context, very recently Iserles and
Kropielnicka [14] have proposed a new family of high-order
splitting methods for the numerical integration of the time-
dependent Schrödinger equation based on a symmetric version of
the Zassenhaus formula.

Several systematic computations of the terms Cn for n > 3 in
the Zassenhaus formula have been carried out in the literature,
starting with the work of Wilcox [7], where a recursive procedure
is presented that has been subsequently used to get explicit
expressions up to C6 in terms of nested commutators [12]. On
the other hand, Volkin [15] proposed a general technique to
express a function of non-commuting operators as an expansion
in successively higher commutators of the operators involved. In
particular, he was able to get recursive formulae up to C9. By
following an idea already suggested by Wilcox in [7], Suzuki [16]
obtained the successive terms Cn(X, Y ) in

eλ(X+Y )
= eλXeλYeλ2C2eλ3C3 · · · (1.3)

by differentiating both sides with respect to λ and setting λ = 0
after each differentiation. In this way

C2 =
1
2


d2

dλ2
(e−λYe−λXeλ(X+Y ))


λ=0

=
1
2
[Y , X]

C3 =
1
3!


d3

dλ3
(e−λ2C2e−λYe−λXeλ(X+Y ))


λ=0

=
1
3
[C2, X + 2Y ]

and in general, for n ≥ 3,

Cn =
1
n!


dn

dλn
(e−λn−1Cn−1 · · · e−λ2C2e−λYe−λXeλ(X+Y ))


λ=0

. (1.4)

Finally, Baues [17] gave explicit formulae for the Zassenhaus terms
via homotopy theory and more recently Kurlin [18] obtained a
closed expression for


n≥2 Cn in the metabelian case.
All of these proposals give results for Cn as a linear combination
of nested commutators. In contrast, Scholz and Weyrauch [19]
proposed a recursive procedure based onupper triangularmatrices
that can be easily implemented in a symbolic algebra package.
In this case, however, the expressions for Cn are not explicitly
written down in terms of homogeneous Lie polynomials. More
recently [20], the same authors have applied a technique related
to one previously used by Witschel [21] to get Cn up to n = 15 in
less than 2 min of CPU time. Here also the Zassenhaus terms are
written as

Cn =


w,|w|=n

gww, (1.5)

where gw is a rational coefficient and the sum is taken over all
words w with length |w| = n in the symbols X and Y , i.e., w =

a1a2 · · · an, each ai being X or Y . Of course, one may always apply
the Dynkin–Specht–Wever theorem [22], and express Cn as

Cn =
1
n


w,|w|=n

gw[w], (1.6)

that is, the individual terms are the same as in the associative series
(1.5) except that the word w = a1a2 . . . an is replaced with the
right nested commutator [w] = [a1, [a2, . . . [an−1, an] . . .]] and
the coefficient gw is divided by the word length n. In this way Cn
is constructed as a linear combination of nested commutators of
homogeneous degree n, that is, as a linear combination of elements
of the homogeneous subspace L(X, Y )n of degree n of the free
Lie algebra L(X, Y ). As a matter of fact, another representation of
(1.5) in terms of nested commutators is proposed in [20] which,
it is claimed, contains less terms than the Dynkin–Specht–Wever
representation. In any case, it should be stressed that the set
of nested commutators [w] for words w of length n in either
representation is not a basis of the homogeneous subspace
L(X, Y )n.

The purpose of this paper is twofold. First, to present a new
recurrence that allows one to express the Zassenhaus terms Cn
directly as a linear combination of independent elements of the
homogeneous subspace L(X, Y )n. In other words, the procedure,
which can be easily implemented in a symbolic algebra package,
gives Cn up to a prescribed degree directly in terms of independent
commutators involving n operators X and Y . In this way, no
rewriting process in a basis of L(X, Y ) is necessary, thus saving
considerable computing time and memory resources. Moreover,
we are able to express directly Cn with the minimum number of
commutators required at each degree n.

The second aspect we are dealing with concerns the conver-
gence of the Zassenhaus formula when it is formulated in a Banach
algebra. As far as we know, there are only two previous results in
the literature. The first one was obtained by Suzuki [16] starting
with the recurrence (1.4). Specifically, he was able to prove that
if |λ| (∥X∥ + ∥Y∥) ≤ log 2 − 1/2 the infinite product (1.3) con-
verges. Subsequently, Bayen [23] generalized the analysis, show-
ing that the product (1.3) converges if |λ| (∥X∥ + ∥Y∥) ≤ r , where
r ≈ 0.596705 is a root of a certain transcendental equation. In
the present work, we obtain sharper bounds for the terms of the
Zassenhaus formula which show that the product (1.2) converges
in an enlarged domain.

A simple but important remark is in order here. In some
applications, the ‘‘left-oriented’’ Zassenhaus formula

eX+Y
= · · · eĈ4(X,Y )eĈ3(X,Y )eĈ2(X,Y )eYeX (1.7)

is used instead of (1.2). A simple observation shows that the
exponents Ĉi and Ci are related through

Ĉi(X, Y ) = (−1)i+1Ci(X, Y ), i ≥ 2
and so we may restrict ourselves to analyzing the ‘‘right-oriented’’
formula (1.2).
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2. Constructing the Zassenhaus terms

2.1. A new recurrence

To derive our recursive procedure, it is convenient to introduce
a parameter λ as in (1.3),

eλ(X+Y )
= eλXeλYeλ2C2eλ3C3eλ4C4 · · · (2.1)

so that the original Zassenhaus formula (1.2) is recovered when
λ = 1. Moreover, we consider the compositions

R1(λ) = e−λYe−λXeλ(X+Y ) (2.2)

and for each n ≥ 2,

Rn(λ) = e−λnCn · · · e−λ2C2e−λYe−λXeλ(X+Y )

= e−λnCnRn−1(λ). (2.3)

It is then clear that

Rn(λ) = eλn+1Cn+1eλn+2Cn+2 · · · . (2.4)

Finally, we introduce

Fn(λ) ≡


d
dλ

Rn(λ)


Rn(λ)−1, n ≥ 1. (2.5)

To determine the series Fn(λ) we proceed as follows. On the one
hand, a simple calculation starting from (2.3), leads for n ≥ 2 to

Fn(λ) = −nCnλ
n−1

+ e−λnCn


d
dλ

Rn−1(λ)


Rn−1(λ)−1eλnCn

= −nCnλ
n−1

+ e−λnCnFn−1(λ)eλnCn

= −nCnλ
n−1

+ e−λnadCn Fn−1(λ)

= e−λnadCn (Fn−1(λ) − nCnλ
n−1), (2.6)

where we have used the well known formula

eABe−A
= eadAB =


n≥0

1
n!

adn
AB

with

adAB = [A, B], adj
AB = [A, adj−1

A B], ad0
AB = B.

On the other hand, differentiating expression (2.4) with respect
to λ and taking into account (2.5) we arrive at

Fn(λ) = (n + 1)Cn+1λ
n

+

∞
j=n+2

jλj−1eλn+1adCn+1 · · · eλj−1adCj−1 Cj. (2.7)

In other words,

Fn(λ) = (n + 1)Cn+1λ
n
+ Gn+1(λ), n ≥ 1,

where Gn+1(0) = G(1)
n+1(0) = · · · = G(n)

n+1(0) = 0. In consequence,
we have, for n ≥ 1,

Fn+1(λ) = e−λn+1adCn+1Gn+1(λ), (2.8)

Cn+1 =
1

(n + 1)!
F (n)
n (0), (2.9)

Gn+1(λ) = Fn(λ) −
λn

n!
F (n)
n (0). (2.10)

Expressions (2.8)–(2.10) allow one to compute recursively the
Zassenhaus terms Cn starting from F1(λ). The sequence is

Fn(λ) −→ Cn+1 −→ Gn+1(λ) −→ Fn+1(λ) −→ · · · , n ≥ 1.
Let us analyze in more detail this procedure, with the goal of
providing an algorithm well adapted from a computational point
of view.

For n = 1, and taking into account (2.2), we get
F1(λ) = −Y − e−λYXeλY

+ e−λYe−λX (X + Y )eλXeλY

= −Y − e−λadY X + e−λadY e−λadX (X + Y )

= e−λadY (e−λadX − I)Y ,

that is,

F1(λ) =

∞
i=0

∞
j=1

(−λ)i+j

i!j!
adi

Y ad
j
XY (2.11)

or equivalently

F1(λ) =

∞
k=1

f1,kλk, with f1,k =

k
j=1

(−1)k

j!(k − j)!
adk−j

Y adj
XY . (2.12)

In general, from (2.6) a straightforward calculation shows that for
n ≥ 2,

Fn(λ) =

∞
k=n

fn,kλk,

with fn,k =

[k/n]−1
j=0

(−1)j

j!
adj

Cn fn−1,k−nj, k ≥ n. (2.13)

Here [k/n] denotes the integer part of k/n. Moreover, a closer
examination of (2.7) reveals that

Fn(λ) = (n + 1)Cn+1λ
n
+ (n + 2)eλn+1adCn+1 Cn+2λ

n+1
+ · · ·

= (n + 1)Cn+1λ
n
+ (n + 2)Cn+2λ

n+1
+ · · ·

+ (2n + 2)C2n+2λ
2n+1

+ λ2n+2
[Cn+1, Cn+2] + · · ·

=

2n+2
k=n+1

kCkλ
k−1

+ λ2n+2Hn(λ), (2.14)

where Hn(λ) involves commutators of Cj, j ≥ n + 1. Notice that
the terms Cn+1, . . . , C2n+2 of the Zassenhaus formula can be then
directly obtained from Fn(λ). In particular, one directly gets from
(2.11)

Cn+1 =
1

n + 1
f1,n =

1
n + 1

n−1
i=0

(−1)n

i!(n − j)!
adi

Y ad
n−j
X Y ,

for n = 1, 2, 3. (2.15)
Explicitly,

C2 = −
1
2
[X, Y ],

C3 =
1
3
[Y , [X, Y ]] +

1
6
[X, [X, Y ]],

C4 = −
1
8
([Y , [Y , [X, Y ]]] + [Y , [X, [X, Y ]]])

−
1
24

[X, [X, [X, Y ]]].

Taking into account (2.13) and (2.14) we have in general

Cn+1 =
1

n + 1
f[n/2],n n ≥ 5, (2.16)

where the expressions of fn,k are given recursively by (2.13).
In summary, the algorithm we propose for computing the

Zassenhaus terms is the following:

Define f1,k by Eq. (2.12)
Cn = (1/n)f1,n−1, n = 2, 3, 4
Define fn,k n ≥ 2, k ≥ n by Eq. (2.13)
Cn = (1/n)f[(n−1)/2],n−1 n ≥ 5.

(2.17)
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This constitutes a new recursive way for obtaining directly the
termCn as a homogeneous Lie polynomial inX , Y of arbitrarily large
degree nwhich can be easily implementedwith a symbolic algebra
package.

2.2. Linear independence

Algorithm (2.17), or equivalently the procedure given by
the identities (2.8)–(2.10), provides expressions for Cn that, by
construction, involve only independent commutators. In other
words, they cannot be simplified further by using the Jacobi
identity and the antisymmetry property of the commutator.

In order to prove this assertion, it is convenient to get a more
explicit expression of Fn(λ) and Cn+1 from (2.8)–(2.10). To this end,
consider for n ≥ 1 the sets Jn and In of (n + 1)-tuples of non-
negative integers recursively defined as follows:

J1 = {(i0, i1) ∈ N2
: i0 ≥ 1},

In = {(i0, i1, . . . , in) ∈ Jn : i0 + i1 + 2i2 + · · · + nin = n},
Jn+1 = (Jn \ In) × N.

The set In can be directly defined as the set of (n + 1)-tuples of
non-negative integers satisfying that i0 + i1 + 2i2 + · · · + nin = n
and

j + 1 ≤ i0 + i1 + 2i2 · · · + jij for j = 0, . . . , n − 1. (2.18)

Thus, in particular, I1 = {(1, 0)}, I2 = {(1, 1, 0), (2, 0, 0)}, etc.
Observe that, by construction, each (i0, i1, . . . , in) ∈ In is such that
im = 0 ifm > n/2.

From (2.8)–(2.10), one can then prove by induction on n that,
for n ≥ 1,

Fn(λ) =


(i0,i1,...,in)∈Jn

(−1)i0+···+inλi0+i1+2i2+···+nin

i0!i1! · · · in!

× adin
Cn · · · adi2

C2
adi1

Y ad
i0
X Y ,

Cn+1 =
1

n + 1


(i0,i1,...,in)∈In

(−1)i0+···+in

i0!i1! · · · in!

× adin
Cn · · · adi2

C2
adi1

Y ad
i0
X Y . (2.19)

In fact, this is clearly true for n = 1 (Eqs. (2.11) and (2.15),
respectively), whereas successive application of (2.8)–(2.10) leads
to the general result.

Now, repeated application of the Lazard elimination principle
[24], together with I1 = {(1, 0)}, {C2} = {−

1
2 [X, Y ]} = {−

1
2ad

i1
Y

adi0
X Y : (i0, i1) ∈ I1}, shows that, as a vector space,

L(X, Y ) = span({X}) ⊕ L({adj
XY : j ≥ 0})

= span({X}) ⊕ span({Y })

⊕ L({adi
Y ad

i
XY : i ≥ 0, j ≥ 1})

= span({X, Y }) ⊕ L({adi1
Y ad

i0
X Y : (i0, i1) ∈ J1})

= span({X, Y })

⊕ L({C2} ∪ {adi1
Y ad

i0
X Y : (i0, i1) ∈ J1 \ I1})

= span({X, Y , C2})

⊕ L({adi2
C2
adi1

Y ad
i0
X Y : (i0, i1, i2) ∈ J2}).

More generally, application of Lazard elimination together with
(2.19) gives

L(X, Y ) ⊂ span({X, Y , C2, . . . , Cn})

⊕ L({adin
Cn · · · adi2

C2
adi1

Y ad
i0
X Y : (i0, . . . , in) ∈ Jn})

⊂ span({X, Y , C2, . . . , Cn})

⊕ L({Cn+1} ∪ {adin
Cn · · · adi2

C2
adi1

Y ad
i0
X Y :
(i0, . . . , in) ∈ Jn \ In})

⊂ span({X, Y , C2, . . . , Cn+1})

⊕ L({adin+1
Cn+1

· · · adi2
C2
adi1

Y ad
i0
X Y :

(i0, . . . , in+1) ∈ Jn+1}).

In consequence, the terms {adim
Cm · · · adi2

C2
adi1

Y ad
i0
X Y : (i0, i1, . . . ,

im) ∈ Jn} are linearly independent in the free Lie algebra L(X, Y )
and the same is true for the representation (2.19) of the Zassenhaus
terms.

2.3. Computational aspects

We have implemented the recursive procedure (2.17) in
MathematicaTM as the following algorithm.

Clear[Cmt, ad, ff, cc];
$ RecursionLimit= 1024;
Cmt[a_, a_]:= 0;
Cmt[a___, 0, b___]:= 0;
Cmt[a___, c_ + d_, b___] := Cmt[a, c, b]
+ Cmt[a, d, b];
Cmt[a___, n_ c_Cmt, b___]:= n Cmt[a, c, b];
Cmt[a___, n_ X, b___]:= n Cmt[a, X, b];
Cmt[a___, n_ Y, b___]:= n Cmt[a, Y, b];
Cmt /: Format[Cmt[a_, b_]]:= SequenceForm
["[", a, ",", b, "]"];

ad[a_, 0, b_]:= b;
ad[a_, j_Integer, b_]:= Cmt[a, ad[a, j-1, b]];
ff[1, k_]:= ff[1, k] =

Sum[((-1)^k/(j! (k-j)!)) ad[Y, k-j,
ad[X, j, Y]], {j, 1, k}];

cc[2] = (\chem{1/2}) ff[1, 1];
ff[p_, k_]:= ff[p, k] =

Sum[((-1)^j/j!) ad[cc[p], j, ff[p-1, k - p j]],
{j, 0,

IntegerPart[k/p] - 1}];
cc[p_Integer]:= cc[p] =

Expand[(1/p) ff[IntegerPart[(p-1)/2], p-1]];

The object Cmt [x1, x2, . . . , xn−1, xn] refers to the nested
commutator [x1, [x2, . . . [xn−1, xn] · · ·]]. It just has attached the
linearity property (there is no need to attach to it the antisymmetry
property and the Jacobi identity). The symbol ad represents
the adjoint operator and its powers adj

ab, whereas ff[1,k],
ff[p,k] and cc[p] correspond to expressions (2.12), (2.13) and
(2.16), respectively. Proceeding in this way, we have obtained the
expressions of Cn up to n = 20 with a reasonable computational
time and memory requirements. Thus, for instance, constructing
the terms up to degree n = 20 with a personal computer (2.4 GHz
Intel Core 2 Duo processorwith 2 GB of RAM) takes less than 20 s of
CPU time and 35MB of memory. The expression for C20 has 48,528
terms, all of them independent. The resulting expressions up to C8
are identical to those expressed in the classical Hall basis.

In Table 1 we collect the CPU time (in seconds) and memory
(in MB) needed to construct the terms C2, C3, . . . , Cn up to a
given value of n both with the recurrence (2.17) (New) and
the implementation provided in [20] using a variant of the so-
called comparison method previously introduced in [21] (W-S).
Notice that with this method, which is the most efficient of
all the procedures analyzed in [20], the Zassenhaus exponents
Cj are expressed as linear combinations of words of length j
and not directly in terms of independent commutators (although
this is always possible by applying the Dynkin–Specht–Wever
theorem or Theorem 2 in [20], and then simplifying the resulting
expressions by taking into account the Jacobi identity and the
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Table 1
CPU time and memory required for the computation of the Zassenhaus terms
C2, C3, . . . , Cn up to the given value of n using the algorithmpresented in [20] (W-S)
and recurrence (2.17) (New).

n CPU time (s) Memory (MB)
W-S New W-S New

14 29.18 0.14 122.90 0.88
16 203.85 0.59 764.32 4.09
18 3.01 11.12
20 19.18 35.27

antisymmetry property of the commutator). For comparison, C16
has 54,146 terms when expressed as combinations of words, but
only 3711 terms with the new formulation. This translates directly
into the memory requirements of both algorithms, as is evident
from the results collected in the table.

3. Convergence of the Zassenhaus formula

Suppose now that X and Y are defined in a Banach algebra A,
that is to say, an algebra that is also a complete normed linear space
whose norm is submultiplicative,

∥XY∥ ≤ ∥X∥ ∥Y∥ (3.1)

for any two elements of A. Notice that for the commutator one
has ∥[X, Y ]∥ ≤ 2∥X∥ ∥Y∥. Then it makes sense to analyze the
convergence of the Zassenhaus formula (1.2).

As stated in the introduction, we are aware of only two previous
results establishing sufficient conditions for convergence of the
form ∥X∥ + ∥Y∥ < r with a given r > 0. Specifically, Suzuki [16]
obtained rs = log 2 −

1
2 ≈ 0.1931, whereas Bayen [23] proved

that the domain of convergence can be enlarged up to a value of rb
given by the unique positive solution of the equation

z2

1 + 2

 z

0

e2w − 1
w

dw


= 4(2 log 2 − 1).

A numerical computation shows that rb = 0.59670569 . . .. Thus
for ∥X∥ + ∥Y∥ < rb one has

lim
n→∞

eXeYeC2 · · · eCn = eX+Y . (3.2)

In the following,weuse recursion (2.8)–(2.10) to show that (3.2)
holds indeed for (x, y) ≡ (∥X∥, ∥Y∥) ∈ R2 in a domain that is
larger than {(x, y) ∈ R2

: 0 ≤ x + y < rb}.
Clearly, (3.2) holds if

lim
n→∞

∥Rn(1)∥ = 1, (3.3)

where Rn(λ) is given by (2.4), and thus is the solution of the initial
value problem

d
dλ

Rn(λ) = Fn(λ)Rn(λ), Rn(0) = I. (3.4)

It is well known that, if
 1
0 ∥Fn(λ)∥dλ < ∞, then there exists

a unique solution Rn(λ) of (3.4) for 0 ≤ λ ≤ 1, and that
∥Rn(1)∥ ≤ exp(

 1
0 ∥Fn(λ)∥dλ). In consequence, convergence (3.3)

will be guaranteed whenever (x, y) = (∥X∥, ∥Y∥) ∈ R2 is such
that

lim
n→∞

 1

0
∥Fn(λ)∥dλ = 0.

From (2.19) we have that ∥Cn+1∥ ≤ δn+1, where δ2 = x y and for
n ≥ 2,

δn+1 =
1

n + 1


(i0,i1,...,in)∈In

2i0+···+in

i0!i1! · · · in!
δin
n · · · δ

i2
2 yi1xi0y.
Similarly, ∥Fn(λ)∥ ≤ fn(λ), where

f1(λ) =

∞
i1=0

∞
i0=1

(2λ)i0+i1

i0!i1!
yi1xi0y = e2λy(e2λx − 1)y, (3.5)

and for n ≥ 2,

fn(λ) =


(i0,i1,...,in)∈Jn

2i0+···+inλi0+i1+2i2+···+nin

i0!i1! · · · in!
δin
n · · · δ

i2
2 yi1xi0y.

Note that this implies 1

0
fn(λ)dλ ≤

∞
k=n

δk,

so that (3.3) is ensured if the series


∞

k=2 δk converges. Let us
analyze each term of this series by mimicking the recursive
procedure given by (2.17). From (2.12) (or alternatively from (3.5))
and (2.13), we get

∥f1,k∥ ≤ d1,k ≡ 2ky
k

j=1

1
j!(k − j)!

xjyk−j

=
2k

k!
y((x + y)k − yk)

∥fn,k∥ ≤ dn,k =

[k/n]−1
j=0

2j

j!
δj
ndn−1,k−nj (3.6)

whence

∥Cn∥ ≤ δn =
1
n
d[(n−1)/2],n−1, n ≥ 3. (3.7)

A sufficient condition for convergence is obtained by imposing

lim
n→∞

δn+1

δn
< 1. (3.8)

At this point it is worth remarking that, although not reflected by
the notation, both dn,k and δn depend on (x, y) = (∥X∥, ∥Y∥),
so condition (3.8) implies in fact a constraint on the convergence
domain (x, y) ∈ R2 of the Zassenhaus formula. In Fig. 1, we show
graphically the (numerically computed) domain D of such points
(x, y). This has been obtained by computing for each point the
coefficients dn,k and δn up to n = 1000 (in fact, considering a
smaller value of n the figure does not change significantly). We
have also included for comparison the previous results x + y <
0.1931 and x + y < 0.5967 of Suzuki and Bayen, respectively.
Observe that the new convergence domain is considerably larger.
In particular, it contains the region x + y < 1.054, but it is not
restricted to that. For instance, the convergence domain contains
the sets {(x, 2.9216) : x < 0.00292} and {(2.893, y) : y <
0.0145}, and also the points (x, 0) and (y, 0) with arbitrarily large
values of x or y.

In summary, we have presented a new recursive procedure
that not only allows us to get the expressions of the Zassenhaus
exponents Cn directly in terms of independent commutators in
an efficient way and can be easily implemented in any symbolic
algebra package, but also shows, by bounding appropriately
each term in the recursion, that the convergence domain of
the Zassenhaus formula is considerably larger than the domain
guaranteed by previously known results.
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