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Abstract
In this paper, we are concernedwith a formulation ofMagnus and Floquet-Magnus expansions for
general nonlinear differential equations. To this aim, we introduce suitable continuous variable
transformations generated by operators. As an application of the simple formulas so-obtained, we
explicitly compute thefirst terms of the Floquet-Magnus expansion for theVan der Pol oscillator and
the nonlinear Schrödinger equation on the torus.

1. Introduction

TheMagnus expansion constitutes nowadays a standard tool for obtaining both analytic and numerical
approximations to the solutions of non-autonomous linear differential equations. In its simplest formulation,
theMagnus expansion [1] aims to construct the solution of the linear differential equation

= =˙ ( ) ( ) ( ) ( ) ( )Y t A t Y t Y I, 0 , 1

whereA(t) is a n×nmatrix, as

= W( ) ( ) ( )Y t texp , 2

whereΩ is an infinite series

åW = W W =
=

¥

( ) ( ) ( ) ( )t t , with 0 0, 3
k

k k
1

whose terms are increasingly complex expressions involving iterated integrals of nested commutators of the
matrixA evaluated at different times.

Since the 1960s theMagnus expansion (oftenwith different names) has been used inmany differentfields,
ranging fromnuclear, atomic andmolecular physics to nuclearmagnetic resonance and quantum
electrodynamics,mainly in connectionwith perturbation theory.More recently, it has also been the starting
point to construct numerical integrationmethods in the realmof geometric numerical integration (see [2] for a
review), when preserving themain qualitative features of the exact solution, such as its invariant quantities or the
geometric structure is at issue [3, 4]. The convergence of the expansion is also an important feature and several
general results are available [5–8].

Given the favourable properties exhibited by theMagnus expansion in the treatment of the linear problem
(1), it comes as no surprise that several generalizations have been proposed along the years.We canmention, in
particular, equation (1)when the (in general complex)matrix-valued functionA(t) is periodic with periodT. In
that case, it is possible to combine theMagnus expansionwith the Floquet theorem [9] and construct the
solution as

= L( ) ( ( )) ( ) ( )Y t t tFexp exp , 4

OPEN ACCESS

RECEIVED

24 July 2019

REVISED

4 September 2019

ACCEPTED FOR PUBLICATION

9 September 2019

PUBLISHED

23 September 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2399-6528/ab42c1
https://orcid.org/0000-0002-6445-279X
https://orcid.org/0000-0002-6445-279X
mailto:fernando.casas@uji.es
mailto:philippe.chartier@inria.fr
mailto:ander.murua@ehu.es
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab42c1&domain=pdf&date_stamp=2019-09-23
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab42c1&domain=pdf&date_stamp=2019-09-23
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


whereΛ(t+T)=Λ(t) and bothΛ(t) and F are series expansions

å åL = L =
=

¥

=

¥

( ) ( ) ( )t t F F, , 5
k

k
k

k
1 1

withΛk(0)=0 for all k. This is the so-called Floquet–Magnus expansion [10], and has beenwidely used in
problems of solid state physics and nuclearmagnetic resonance [11, 12]. Notice that, due to the periodicity ofΛk,
the constant term Fn can be independently obtained as = W ( )F T Tk k for all k.

In the general case of a nonlinear ordinary differential equation in n,

= = Î˙ ( ) ( ) ( )x g x t x x, , 0 , 6n
0

the usual procedure to construct theMagnus expansion requires first to transform (6) into a certain linear
equation involving operators [13]. This is done by introducing the Lie derivative associatedwith g and the family
of linear transformationsΦt such that jF =[ ] ◦f ft t , wherejt denotes the exactflowdefined by (6) and f is any
(infinitely) differentiablemap  ⟶f : n . The operatorΦt obeys a linear differential equationwhich is then
formally solvedwith the correspondingMagnus expansion [2]. Once the series is truncated, it corresponds to the
Lie derivative of some functionW(x, t). Finally, the solution at some given time t=T can be approximated by
determining the 1-flowof the autonomous differential equation

= =˙ ( ) ( )y W y T y x, , 0 0

since, by construction, j( ) ( )y x1 T 0 . Clearly, thewhole procedure is different andmore involved than in the
linear case. It is the purpose of this work to provide a unified framework to derive theMagnus expansion in a
simpler waywithout requiring the apparatus of chronological calculus. This will be possible by applying the
continuous transformation theory developed byDewar in perturbation theory in classicalmechanics [14]. In
that context, theMagnus series is just the generator of the continuous transformation sending the original
system (6) to the trivial one =Ẋ 0.Moreover, the same idea can be applied to the Floquet–Magnus expansion,
thus establishing a natural connectionwith the stroboscopic averaging formalism. In the process, the relation
with pre-Lie algebras and other combinatorial objects will appear in a natural way.

The plan of the paper is as follows.We review several procedures to derive theMagnus expansion for the
linear equation (1) in section 2 and introduce a binary operator thatwill play an important role in the sequel. In
section 3we consider continuous changes of variables and their generators in the context of general ordinary
differential equations, whereas in sections 4 and 5we apply this formalism for constructing theMagnus and
Floquet–Magnus expansions, respectively, in the general nonlinear setting. There, we also showhow they
reproduce the classical expansions for linear differential equations. As a result, both expansions can be
considered as the output of appropriately continuous changes of variables rendering the original system into a
simpler form. Finally, in section 6we illustrate the techniques developed here by considering two examples: the
Van der Pol oscillator and the nonlinear Schrödinger equationwith periodic boundary conditions.

2. TheMagnus expansion for linear systems

There aremanyways to get the terms of theMagnus series (3). If we introduce a (dummy) parameter ε in
equation (1), i.e., we replaceA by εA, then the successive terms in

e e eW = W + W + W + ( ) ( ) ( ) ( ) ( )t t t t 71
2

2
3

3

can be determined by insertingΩ(t) into equation (1) and computing the derivative of thematrix exponential,
thus arriving at [15]

åe = W º
+

W = W + W W + W W W +W
=

¥

W ( ˙ )
( )!

( ˙ ) ˙ [ ˙ ]
!

[ [ ˙ ]] ( )A d
k

exp
1

1
ad

1

2
,

1

3
, , 8

k

k

0

where [ ]A B, denotes the usual Lie bracket (commutator) and = -[ ]B A Bad , adA
j

A
j 1 , =Bad 0A

0 . At this point it is
useful to introduce the linear operator

ò= ( ) ( )( ) ≔ [ ( ) ( )] ( )H t F G t F u G t du, 9
t

0

so that, in terms of

e e e= W = + + + ( ) ( ) ( ) ( ) ( ) ( )R t
d

dt
t R t R t R t , 101

2
2

3
3

2
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equation (8) can bewritten as

e = + + + +      
! !

( )A R R R R R R R R R R
1

2

1

3

1

4
. 11

Herewe have used the notation

=       ( )F F F F F F .m m1 2 1 2

Now the successive termsRj(t) can be determined by substitution of (10) into (11) and comparing like powers of
e. In particular, this gives

=

=- = -

=- + -

= +
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Of course, equation (8) can be inverted, thus resulting in

å eW = W =
=

¥

W
˙

!
( ( )) ( ) ( )B

k
A tad , 0 0 12

k

k k

0

where theBj are the Bernoulli numbers, that is

-
= + + + + +

= - + - +
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In terms ofR, equation (12) can bewritten as

e = - + + +-        
! !

( )R A B R A
B

R R A
B

R R R R A
2 4

. 131
1

2 4

Substituting (10) in equation (13) andworking out the resulting expression, one arrives to the following
recursive procedure allowing to determine the successive termsRj(t):
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Notice in particular that

= = - =    ( )( ) ( ) ( )S A A S A A A S A A A,
1

2
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At this point it is worth remarking that any of the above procedures can be used towrite eachRj in terms of the
binary operation> and the original time-dependent linear operatorA, which gives in general one termper
binary tree, as in [15, 16], or equivalently, one termper planar rooted tree. However, the binary operator>
satisfies, as a consequence of the Jacobi identity of the Lie bracket of vector fields and the integration by parts
formula, the so-called pre-Lie relation

- = -       ( ) ( ) ( )F G H F G H G F H G F H, 15

As shown in [17], this relation can be used to rewrite eachRj as a sumof fewer terms, the number of terms being
less than or equal to the number of rooted trees with j vertices. For instance, the formula forR4 can bewritten in
the simplified form

= - -     (( ) ) ( )R A A A A A A A A
1

6

1

12
4

upon using the pre-Lie relation (15) for = F G G andH=G.
If, on the other hand, one ismore interested in getting an explicit expression forΩj(t), the usual starting point

is to express the solution of (1) as the series

òå= +
=

¥

D
 ( ) ( ) ( ) ( ) ( )

( )
Y t I A t A t A t dt dt , 16

n t
n n

1
1 2 1

n
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where

   D = ¼ ( ) {( ) } ( )t t t t t t, , : 0 17n n n1 1

and then compute formally the logarithmof (16). Then one gets [18–21]

åW = = W
=

¥

( ) ( ) ( )t Y t tlog ,
n

n
1

with

òåW = -
s

s s s
Î

- D
s

s

 ( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )t
n

A t A t A t dt dt
1

1
1

. 18n
S

d

n

d
t

n n
1

1 2 1

n
n

Hereσä Sn denotes a permutation of {1, 2,K, n }. An expression in terms only of independent commutators
can be obtained by using the class of bases proposed byDragt and Forest [22] for the Lie algebra generated by the
operatorsA(t1),KA(tn), thus resulting in [23]

ò ò òåW = -
s

s s s

Î
-

-

s

s
-

-


 
( )( ) ( )

[ ( ) [ ( ) [ ( ) ( )] ]] ( )( ) ( ) ( )
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where nowσ is a permutation of ¼ -{ }n1, 2, , 1 and dσ corresponds to the number descents ofσ.We recall that
σ has a descent in i ifσ(i)>σ(i+1), i=1,K, n−2.

3. Continuous changes of variables

Our purpose in the sequel is to generalize the previous expansion to general nonlinear differential equations. It
turns out that a suitable tool for that purpose is the use of continuous variable transformations generated by
operators [14, 24].We therefore summarize next itsmain features.

Given a generic ODE systemof the form

= ( ) ( )d

dt
x f x t, , 20

the idea is to apply some near-to-identity change of variables ⟼x X that transforms the original system (20)
into

= ( ) ( )d

dt
X F X t, , 21

where the vector field F(X, t) adopts some desirable form. In order to do that in a convenient way, we apply a
one-parameter family of time-dependent transformations of the form

= Y Î( )z X t s, , ,s

such thatΨ0(X, t)≡X, and x=Ψ1(X, t) is the change of variables that we seek. In this way, one continuously
varies s from s=0 to s=1 tomove from the trivial change of variables x=X to x=Ψ1(X, t), so that for each
solutionX(t) of (21), the function z(t, s) defined by z(t, s)=Ψs(X(t), t) satisfies a differential equation

¶
¶

= ( ) ( )
t

z V z t s, , . 22

In particular, wewill have that F(X, t)=V(X, t,0) and f (x, t)=V(x, t,1).
Next, the near-to-identity family ofmaps = Y⟼ ( )X z X t,s is defined in terms of a differential equation

in the independent variable s,

¶
¶

=( ) ( ( ) ) ( )
s

z t s W z t s t s, , , , 23

by requiring that z(t, s)=Ψs(z(t, 0), t) for any solution z(t, s) of (23). ThemapΨs(·, t)will be near-to-identity ifW
(z, t, s) is of the form

e e= + +( ) ( ) ( )W z t s W z t s W z t s, , , , , , ,1
2

2

for some small parameter e.

Proposition 1 ([14]). Given F and e e= + + W W W1
2

2 , the right-hand sideV of the continuously transformed
system (22) can be uniquely determined (as a formal series in powers of e) from =( ) ( )V X t F X t, , 0 , and

4
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¶
¶

-
¶
¶

= ¢ - ¢( ) ( ) ( ) ( ) ( ) ( ) ( )
s

V x t s
t

W x t s W x t s V x t s V x t s W x t s, , , , , , , , , , , , , 24

where ¢W and ¢V refer to the differentials ¶ Wx and ¶ Vx , respectively.

Proof.By partial differentiation of both sides in (23)with respect to t and partial differentiation of both sides in
(22)with respect to s, we conclude that (24) holds for all = = Y( ) ( )x z s t x t, ,s 0 with arbitrary x0 and all (t,s).
One can show that the equality (24) holds for arbitrary (x, t, s) by taking into account that, for given t and s,

= Y ( )x x x t,s0 0 is one-to-one.
Now, sinceV(x, t,0)=F(x, t), we have that

ò s s= +( ) ( ) ( ) ( )V x t s F x t S x t d, , , , , , 25
s

0

where = + ¢ - ¢¶
¶

S W W V V W
t

. Clearly, the successive terms of

e e= + + + V F V V1
2

2

are uniquely determined by equating like powers of ε in (25). +

In the sequel we always assume that the generatorW of the change of variables

(i) does not depend on s, and

(ii) W(x,0, s)≡ 0, so thatΨs(x,0)=x and x(0)=X(0).

The successive terms in the expansion of ( )V x t s, , in proposition 1 can be conveniently computedwith the help
of a binary operation> onmaps  + ⟶d d1 defined as follows. Given two suchmaps P andQ, then P Q is
a newmapwhose evaluation at Î +( )x t, d 1 takes the value

ò t t t= ¢ - ¢( )( ) ( ( ) ( ) ( ) ( )) ( )P Q x t P x Q x t Q x t P x d, , , , , . 26
t

0

Under these conditions, fromproposition 1, we have that

¶
¶

-
¶
¶

=( ) ( ) [ ( ) ( )] ( )
s

V x t s
t

W x t W x t V x t s, , , , , , , 27

with the notation

¢ - ¢[ ( ) ( )] ≔ ( ) ( ) ( ) ( ) ( )W x t V x t s W x t V x t s V x t s W x t, , , , , , , , , , 28

for the Lie bracket.
Equation (27), in terms of

¶
¶

( ) ≔ ( ) ( )R x t
t

W x t, , , 29

reads

ò t t t
¶
¶

= + ¢ - ¢( ) ( ) ( ( ) ( ) ( ) ( ))
s

V x t s R x t R x V x t s V x t s R x d, , , , , , , , ,
t

0

or equivalently

ò s= + + s ⎜ ⎟
⎛
⎝

⎞
⎠V V sR R V d ,s

s

0
0

wherewe have used the notation ( ) ≔ ( )V x t V x t s, , ,s . Since =( ) ( )V X t F X t, , 0 , , then

= + + +

+ + + + +

   

      

(· · )
!

!
( )

V s s R
s

R R
s

R R R

F s R F
s

R R F
s

R R R F

, ,
2 3

2 3
30

2 3

2 3

with the convention =       ( )F F F F F Fm m1 2 1 2 .
We thus have the following result:

Proposition 2.A change of variables = Y ( )x X t,1 defined in terms of a continuous change of variables
= Y⟼ ( )X z X t,s with generator

e e= + + ( ) ( ) ( ) ( )W x t W x t W x t, , , 311
2

2

5
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andW(x,0)≡ x, transforms the system of equations (20) into (21), where f and F are related by

= + + + +

+ + + + +

      

      

! !

!
( )

f R R R R R R R R R R

F R F R R F R R R F

1

2

1

3

1

4
1

2

1

3
32

and R is given by (29).

Proposition 2 deals with changes of variables such thatX=Ψ1(X, 0) (as a consequence ofW(X, 0)≡X), so
that the initial value problemobtained by supplementing (20)with the initial condition x(0)=x0 is transformed
into (21) supplementedwithX(0)=x0.

More generally, onemay consider generatorsW(·, t)within some class  of time-dependent smooth vector
fields such that the operator  ¶ :t is invertible. Next result reduces to proposition 2, when one considers
some class  of generatorsW(·, t) such thatW(x,0)≡ 0, so that  ¶ :t is invertible, with inverse defined

as ò t t¶ =- ( ) ( )W x t W x d, ,t
t1

0
.

Proposition 3.A change of variables = Y ( )x X t,1 defined in terms of a continuous change of variables
= Y⟼ ( )X z X t,s with generator

e e= + + ( ) ( ) ( ) ( )W x t W x t W x t, , , 331
2

2

within some class  of time dependent smooth vector fields with invertible  ¶ :t transforms the initial value
problem

= =( ) ( ) ( )d

dt
x f x t x x, , 0 340

into

= = Y-( ) ( ) ( ) ( )d

dt
X F X t X x, , 0 , 351

1
0

where f F, , and = ¶R Wt are related by (32), and the binary operator   ´  : is defined as

= ¶ ¢ - ¢ ¶ = ¶- - - ( ) ( ) [ ] ( )P Q P Q Q P P Q, . 36t t t
1 1 1

Notice that the operation>of (36) satisfies the pre-Lie relation (15), and that this proposition applies, in
particular, to the class  of smooth (2π)-periodic vector fields in d with vanishing average. In that case the
operator∂t is invertible, with inverse given by

 
å å¶ = =-

Î
¹

Î
¹

( ) ˆ ( ) ( ) ˆ ( )W x t
i k

W x W x t W x,
1

e , if , e .t
k
k

i k t
k

k
k

i k t
k

1

0 0

4. Continuous transformations and theMagnus expansion

Consider now an initial value problemof the form

e= =( ) ( ) ( )d

dt
x g x t x x, , 0 , 370

where the parameter ε has been introduced for convenience. As stated in the introduction, the solution x(t) of
this problem (20) can be approximated at a given t as the solution y(s) at s=1 of the autonomous initial value
problem

òe e t t= =( ) ≔ ( ) ( )d

ds
y W y t g z d y x, , , 0 .

t

1
0

0

This is nothing but the first term in theMagnus approximation of x(t). As amatter of fact, theMagnus expansion
is a formal series (31) such that, for eachfixed value of t, formally x(t)=y(1), where y(s) is the solution of

= =( ) ( ) ( )d

ds
y W y t y x, , 0 . 380

TheMagnus expansion (31) can then be obtained by applying a change of variables x=Ψ1(X, t), defined in
terms of a continuous transformation = Y⟼ ( )X z X t,s with generatorW=W(x, t) independent of s, that
transforms (37) into

6
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=
d

dt
X 0.

This can be achieved by applying proposition 2with º( )F X t, 0 and e=( ) ( )f x t g x t, , , i.e., solving

e = + + + +      
! !

( )g R R R R R R R R R R
1

2

1

3

1

4
39

for

e e e= + + + ( ) ( ) ( ) ( )R x t R x t R x t R x t, , , ,1
2

2
3

3

and determining the generatorW as

ò t t=( ) ( ) ( )W x t R x d, , . 40
t

0

At this point it is worth analyzing how the usualMagnus expansion for linear systems developed in section 2
is reproducedwith this formalism. To do that, we introduce operatorsΩ(t) andBs(t) such that

W
¶
¶

( ) ≔ ( ) ( ) ≔ ( ) ( ) ≔ ( )W x t t x V x t s B t x
t

W x t R t x, , , , , , .s

Nowequation (27) reads

¶
¶

- = W - W⎜ ⎟⎛
⎝

⎞
⎠ ( )

s
B x Rx B x B x 41s s s

or equivalently

ò s= + + s ⎜ ⎟
⎛
⎝

⎞
⎠ ( )B B sR R B d , 42s

s

0
0

where the binary operation>defined in (26) reproduces (9). SinceB1(t)=A(t) andB0=0, then (39) is
precisely (11). The continuous change of variables is then given by

= Y = W⟼ ( ) ( ( ))X z X t s t X, exps

so that

= Y = = =W W W( ) ( ) ( ) ( ) ( )( ) ( ) ( )x t X t X t X x, e e 0 e 0t t t
1

reproduces theMagnus expansion in the linear case. In consequence, the expression for each termWj(x, t) in the
Magnus series for theODE (37) can be obtained from the corresponding formula for the linear case with the
binary operation (26) and all results collected in section 2 are still valid in the general setting by replacing the
commutator by the Lie bracket (28).

5. Continuous transformations and the Floquet–Magnus expansion

The procedure of section 3 can be extendedwhen there is a periodic time dependence in the differential
equation. In that case one gets a generalized Floquet–Magnus expansionwith agrees with the usual onewhen the
problem is linear.

As usual, the starting point is the initial value problem

e= =( ) ( ) ( )d

dt
x g x t x x, , 0 , 430

where now g(x, t) depends periodically on t, with periodT. As before, we apply a change of variables x=Ψ1(X, t),
defined in terms of a continuous transformation = Y⟼ ( )X z X t,s with generatorW=W(x, t) that removes
the time dependence, i.e., that transforms (43) into

e e e e e= = + + +

=

( ) ( ) ( ) ( )

( ) ( )

d

dt
X G X G X G X G X

X x

; ,

0 . 44

1
2

2
3

3

0

In addition, the generatorW is chosen to be independent of s and periodic in twith the same periodT.
This can be achieved by considering proposition 2with e e( ) ≔ ( )F X t G X, ; and e( ) ≔ ( )f x t g x t, , ,

solving (32) for the series

e e e= + + + ( ) ( ) ( ) ( )R x t R x t R x t R x t, , , ,1
2

2
3

3
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Thus, for thefirst terms one gets

= -

=- - -

=- + +

- - - -
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R g G

R R R R G G

R R R R R R R R

R G R G R R G G

1

2
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2

1

3
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2

1 1

2 1 1 1 1 2

3 1 2 2 1 1 1 1

1 2 2 1 1 1 1 3

and, in general,

= - = ¼ ( )R U G j, 1, 2, , 45j j j

whereUj only contains terms involving g or the vector fieldsUm andGm of a lower order, i.e., withm<j. This
allows one to solve (45) recursively by taking the average ofUj over one periodT, i.e.,

ò= á ñ º( ) ( ·) ( )G X U X
T

U X t dt,
1

, ,j j

T

j
0

thus ensuring thatRj is periodic. Finally, onceG andR are determined,W is obtained from (40), which in turn
determines the change of variables.

If we limit ourselves to the linear case, g(x, t)=A(t) x, with + =( ) ( )A t T A t , then, by introducing the
operators

L( ) ≔ ( ) ( ) ≔ ( ) ( ) ≔W x t t x V x t s B t x G X FX, , , , , ,s

the relevant equation is now

ò s= + L + L s ⎜ ⎟
⎛
⎝

⎞
⎠˙ ˙ ( )B F s B d , 46s

s

0

which, with the additional constraintB1(t)=A(t), leads to

L = -

L =- L L - L - 

˙

˙ ˙ ˙ ˙
A F

F F
1

2

1 1

2 1 1 1 1 2

and so on, i.e., exactly the same expressions obtained in [10]. The transformation is now

= Y = =L L( ) ( ) ( ) ( )( ) ( )x t X t X t x, e e e 0t t tF
1

thus reproducing the Floquet–Magnus expansion in the periodic case [10].
Several remarks are in order at this point:

1. This procedure has close similarities with several averaging techniques. As a matter of fact, in the quasi-
periodic case, it is equivalent to the high order quasi-stroboscopic averaging treatment carried out in [25].

2. Although both the Magnus and the Floquet–Magnus expansions are convergent in the linear case (1) for
boundedA, the situation is farmore involved in the general nonlinear case. In particular, the formal series
expansions carried out in [25] to determine the averaged system corresponding to equation (43) and the
change of variables do not converge in general. By the same token, convergence of the Floquet–Magnus
expansion cannot be expected in the nonlinear case, although the same type of estimates for error bounds
when the series are truncated can be presumably be derived.

3. A different style of high order averaging (that can bemore convenient in some practical applications) can be
performed by dropping the condition thatW(x, 0)≡x, and requiring instead, for instance, thatW(x, t) has
vanishing average in t. In that case, the initial condition in (44)must be replaced by = Y-( ) ( )X x0 1

1
0 . The

generatorW(x, t) of the change of variables and the averaged vector fields e ( )G x t, can be similarly
computed by considering proposition 3with the class  of smooth quasi-periodic vector fields (on d or on
some smoothmanifold)with vanishing average.

4. The Floquet–Magnus expansion in the linear case provides by construction the structure furnished by the
Floquet theorem and has foundwide application in periodically driven quantum systems, when there is
need not only of determining the effective time-independentHamiltonianHe, but also thefluctuations
around the evolution due toHe, whereas the standardMagnus expansion only providesHewhen it is
determined atmultiples of the period. In the nonlinear case the Floquet–Magnus expansion leads both to
the averaged system and the required transformation.
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6. Examples of application

The nonlinearMagnus expansion has been applied in the context of control theory, namely in non-holonomic
motion planning. Severalmodels in robotics, such asmobile platforms, free-floating robots, etc., can be
described by the system

å= =
=

˙ ( ) ( )( ) ( ) ( )x t A t x g x u , 47
i

m

i i
1

where = ¼( )x x x, , n
T

1 is the configuration, ui, i=1,K,m are the controls,m<n, and the gi are smooth vector
fields. A typicalmotion planning task is tofind controls ui that steer the system from a given initial configuration
x0 to a final one xf.With these requirements, the (nonlinear)Magnus expansion allows one to express, locally
around x0, the solution of (47) as x(t)=y(1), where y(s) is the solution of equation (38). In this way, one formally
gets all admissible directions ofmotions in terms of control parameters, so that (a) one can easily select the
motion in a desired direction and then (b) determine the control parameters in the optimal way that steer the
non-holonomic system into that direction [21, 26, 27]. In this sense, expression (19) and the corresponding one
for the generic, nonlinear case, can be very useful in applications, since it only contains independent terms
[27, 28]. This problem is also closely connectedwith the calculation of the logarithmof theChen–Fliess
series [29].

Asmentioned previously, the general Floquet–Magnus can also be applied in averaging. A large class of
problemswhere averaging techniques are successfully applied ismade of autonomous systems of the form

e= + =˙ ( ) ( ) ( )u Au h u u x, 0 , 480

where h is a smooth function from n to itself (ormore generally from a functional Banach spaceE space to
itself) andA is a skew-symmetricmatrix ( )n (ormore generally a linear operator onE)whose spectrum is
included in pi

T

2 . Denoting = -x e utA and differentiating leads to

e= - + =- - -˙ ˙ ( )x Ae u e u e h e xtA tA tA tA

so that xnow satisfies an equation of the very form (43)with

= -( ) ( )g x t e h e x, .tA tA

TheT-periodicity of gwith respect to time stems from the fact that Ì p( )ASp i

T

2 . For this specific case, relation
(45) leads to the following expressions

= á ñ( ) ( ·) ( )G X g X, , 491

ò t t= -( ) [ ( ) ( )] ( )G X g X g X t d
1

2
, , , , 50

t

2
0

ò ò

ò ò

t s s t

s t s t

=

+
t

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) [ ( ) ( )]

[ ( ) ( ))] ( ) ( )

G X g X g X g X t d d

g X g X d g X t d

1

12
, , , , ,

1

4
, , , , , . 51

t t

t

3
0 0

0 0

If g(x, t) is aHamiltonian vector fieldwithHamiltonianH(x, t), then allGiʼs areHamiltonianwithHamiltonian
Hiʼs. TheseHamiltonians can be computed through the same formulas with Poisson brackets in lieu of Lie
brackets (see e.g. [3]).

6.1.Dynamics of theVan der Pol system
As afirst and elementary application of previous results, we consider theVan der Pol oscillator, whichmay be
looked at as a perturbation of the simple harmonic oscillator:

e
=
= - + -

⎧⎨⎩
˙
˙ ( )

( )
q p

p q q p1
. 522

Clearly, the system is of the form (48)with u=(q, p)T,

=
-

=
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )A h u

u u
0 1
1 0

and
0

1
,

1
2

2

and is thus amenable to the rewriting (43), where

=
-

-
⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( ) ( ) ( )

( ) ( )g x t e h e x e
t t
t t

, and
cos sin
sin cos

.tA tA tA
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In short, we have

e x=˙ ( )x x V ,t t

where

x=
-

= - + - +
⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( ) ( ( ( ) ( ) ) )( ( ) ( ) )V
t
t

x t x t x t x t x
sin
cos

and 1 cos sin sin cos .t t 1 2
2

1 2

Previous formulas give for thefirst term in the procedure

òp
x t= =

- -

- -
= -

-p

t t

 

 
 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )

( )

( )
( )

G X X V d
X X

X X

X
X

1

2

4

4

4

8
1

0

2
1

8 2
2

1

1

8 2
2

2

2
2

and it is then easy to determine an approximate equation of the limit cycle, i.e. = X 22 . As for the dynamics of
thefirst-order averaged system, it is essentially governed by the scalar differential equation on  ( ) ≔N X X 2

2

e= + = -
-( ) ( ˙ ˙ ) ( )d

dt
N X X X X X

N N
2

4

4
,1 1 2 2

which has two equilibria, namely = X 02 and = X 22 . Thefirst one is unstable while the second one is
stable.However, the graphical representation (see figure 1) of the solution of (52) soon convinces us that the true
limit cycle is not a perfect circle. In order to determine a better approximation of this limit cycle, we thus
compute the next termof the average equation from formula (50):

ò òp
x x x x t

e

=
-

 - 

=
- - + - + +

+ - + + +

=-

p

t t t t

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( ) ( ( ) ( ) )

( )

( )

( )

G X V V V V d

X X X X X X X

X X X X X X X

D X JX

1

4
, ,

32 24 5 88 21 10

21 32 88 40 10 5

256
,

t

t X t X t t2
0

2

0

1

256 2 2
2

2
4

1
2

1
4

1
2

2
2

1

256 1 1
4

1
2

2
2

1
2

2
2

2
4

2

where

=
- + - + +

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )
D X

X X X X X X

D X X

32 24 5 88 21 10 0

0 64
2
2

2
4

1
2

1
4

1
2

2
2

1,1 1
2

and

=
-( ) ( )J 0 1

1 0
. 53

Figure 1.Trajectories of the original VanDer Pol system (in red) and of its averaged version up to second order (in blue).
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Now, considering the new quantity e= +( ) ( ) ( )L X N X Q X with

n=( )Q X X X ,1 2
3

we see from the second-order averaged equation

e
e

= -
-

-
 ˙ ( ) ( )X

X
X D X JX

4

8 256
,2

2 2

that





e

e
e

e

e e
e

e
n

e e

e e

= + 

=-
-

- -
-



=-
-

- + + - - +

=-
-

+

( ˙ )

( ) ( ( ) ) ( )

( ) ( ) ( )

( ) ( )

dL

dt

dN

dt
Q X

N N
X D X JX

N
Q X

L L
Q QL Q L Q

L L

,

4

4 128
,

4

8
,

4

4 2

1

2

1

2
4

4

4

X

X

2
2

2
2

2 2 3

3

for n = - 1

2
. Amore accurate description of the limit cycle is thus given by the equation

e
= + X X X4

2
.2

2
1 2

3

6.2. Thefirst two terms of the averaged nonlinear Schrödinger equation (NLS) on the d-dimensional torus
Next, we apply the results of section 5 to the nonlinear Schrödinger equation (for a introduction to theNLS see
for instance [30–32])

 y y e y y y
y y

¶ =-D + Î
= Î

( · ¯ )
( ) ( )
i k t z

z z E

, 0, ,

0, ,
t a

d

0

where  = [ ]a0,a
d d and = ( )E Hs

a
d is ourworking space.We hereafter conform to the hypotheses of [33] and

assume that h is a real-analytic function and that s>d/2, ensuring thatE is an algebra5. The operator−Δ is self-
adjoint non-negative and its spectrum is

 ås
p p

= Î Ì
=

⎜ ⎟ ⎜ ⎟
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

⎛
⎝

⎞
⎠( ) ( )A

a
l l

a

2
;

2
, 54

j

d

j
d

2

1

2
2

so that by Stone’s theorem, the group-operator D( )itexp is periodic with period =
p

T a

2

2

.Wemay thus rewrite
Schrödinger equation as we didwith equation (48). However, we shall instead decompose
y = +( ) ( ) ( )t z q t z ip t z, , , in its real and imaginary parts and derive the corresponding canonical system in
the newunknown

 = Î ´
⎛
⎝⎜

⎞
⎠⎟( ·)

( ·)
( ·) ( ) ( )u t

p t

q t
H H,

,

,
,s

a
d s

a
d

that is to say

e= -D -D + =- -  ⎜ ⎟⎛
⎝

⎞
⎠˙ ( ) ( ) ( ) ( )u J u k u J u u

p
qDiag , , 0 , 551 2 1 0

0
2

wherewe have denoted  = ¶ = + = ˙ ( ) ( ) ( )u u u u u u u, ,t
2 1 2 2 2

2 2 (u1 and u2 are the two components of u), J
is given by (53) and

= -D
-D

⎜ ⎟⎛
⎝

⎞
⎠D 0

0
.

The operatorD if self-adjoint on  ´( ) ( )L La
d

a
d2 2 and an obvious computation shows

=
D D

- D D
- ⎛

⎝⎜
⎞
⎠⎟

( ) ( )
( ) ( )

≔e
t t

t t
R

cos sin

sin cos
,tJ D

t
1

so that
-

etJ AD1
is a group of isometries on  ´( ) ( )L La

d
a
d2 2 aswell as on  ´( ) ( )H Hs

a
d s

a
d . Owing to (54) it is

furthermore periodic (for all t, =+R Rt T t), with period =
p

T a

2

2

. The very samemanipulation as for the
prototypical system (48) then leads to

5
Under all these assumptions, for all initial valueψ0äE and all ε>0, there exits a unique solution y eÎ ([ [ )C b E0, , for some b>0

independent of e [33].
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e= = ⎜ ⎟⎛
⎝

⎞
⎠˙ ( )x g x t x

p
q, , ,0

0

with

 =- -
+

- - -   ( ) ≔ ( ) ( )g x t J e k e x e x R k R x R x, .tJ D tJ D tJ D
t T t t

1 2
4

21 1

2

1

2

Now, it can be verified that

= -( ) ( )g x t J H x t, , ,x
1

where

 ò ò s s= ( ) ≔ ( ( )( ) ) ( ) ( ) ( )H x t K R x t z dz K r k d,
1

2
, with . 56t

r
2

0a
d 2

Remark 1.Recall that the gradient is definedw.r.t. the scalar product (· ·), on  ´( ) ( )L La
d

a
d2 2 that we redefine

for the convenience of the reader: for all pair of functions x1 and x2 in  ´( ) ( )L La
d

a
d2 2 ,

 
ò ò= + =( ) ( ( ) ( ) ( ) ( )) ( ( ) ( ))x x x z x z x z x z dz x z x x dz, , .1 2 1

1
2
1

1
2

2
2

1 2
a
d

a
d

2

where x1
1 and x1

2 are the two components of x1 and similarly for x2. Hence, by definition of the gradient, we have
that

" Î ´  = ¶( ) ( ( ) ) ( )t x x E H x t x H x t x, , , , , , .x x1 2
3

1 2 1 2

Furthermore,

" Î ´ = -( ) ( ) ( )t x x E R x x x R x, , , , ,t t1 2
3

1 2 1 2

and

" Î ¶ = ¶( ) ( ( ) ) ( ( ) )x x x E J g x t x x x J g x t x, , , , , , .x x1 2 2
3

1 2 3 2 1 3

Finally, if f1 and f2 are hamiltonian vector fields, withHamiltonians F1 and F2, then

f f f f f f= ¶ - ¶ =  F F-[ ] { }J, ,X X X1 2 1 2 2 1
1

1 2

where the Poisson bracket is defined by

f fF F ={ } ( )J, , .1 2 1 2

Now, thefirst termof the averaged vector field e( )G X , is simply

= á ñ+  ( ) ( )· · ·G X R k R X R X .T1 4
2

2

In order to obtain the second term,we use the simple fact that for any d Î ( )Hs
a
d the derivatives w.r.t. x in the

direction δmay be computed as

  

 

d d

d

¶ = ¢ ¶

= ¢

     

 

( ( )) · ( )( ) ·
( ) ( )

k R x k R x R x

k R x R x R2 ,

x t t x t

t t t

2 2 2

2

2 2 2

2 2

so that



 

d d

d

¶ =

+ ¢
+

+

 

 

( ( )) · ( )
( ) ( )

g x t R k R x R

R k R x R x R R x

,

2 , .

x t T t t

t T t t t t

4
2

4
2

2

2 2

Inserted in the expression ofG2 we thus obtain the following expression for the e2-termof the averaged equation

ò t t= - = +( ) [ ( ) ( )] ( ) ( )G X g X g X t d I X I X
1

2
, , ,

t

2
0

1 2

with

 

 

ò

ò

t

t

=-

+

t t t

t t t

+ + +

+ + +

   

   

( ) ( ) ( )

( ) ( )

I X R k R x R k R x R xd

R k R x R k R x R xd

1

2

1

2

t

T t T t t

t

t T t t T

1
0

4
2

4
2

0
4

2
4

2

2 2

2 2
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and

  

  

ò

ò

t

t

=- ¢

+ ¢

t t t t t

t t t

+ + +

+ + +

   

   

( ) ( ) ( ( ) )

( ) ( ( ) )

I X R k R x R x R k R x R x R xd

R k R x R x R k R x R x R xd

,

, .

t

T t T t t

t

t T t t t T t

2
0

4
2

4
2

0
4

2
4

2

2 2 2

2 2 2

As alreadymentioned, bothG1 andG2 areHamiltonianwithHamiltonianH1 andH2 which could have been
equivalently computed fromH(x, t) in (56) (see remark 1).
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