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Abstract

In this paper, we are concerned with a formulation of Magnus and Floquet-Magnus expansions for
general nonlinear differential equations. To this aim, we introduce suitable continuous variable
transformations generated by operators. As an application of the simple formulas so-obtained, we
explicitly compute the first terms of the Floquet-Magnus expansion for the Van der Pol oscillator and
the nonlinear Schrodinger equation on the torus.

1. Introduction

The Magnus expansion constitutes nowadays a standard tool for obtaining both analytic and numerical
approximations to the solutions of non-autonomous linear differential equations. In its simplest formulation,
the Magnus expansion [1] aims to construct the solution of the linear differential equation

Y(t) =AY (1), Y =1 (D
where A(t)isan X nmatrix, as
Y (1) = exp Q(2), 2
where (2 is an infinite series
Q) = %), with — (0) = 0, (3)
k=1

whose terms are increasingly complex expressions involving iterated integrals of nested commutators of the
matrix A evaluated at different times.

Since the 1960s the Magnus expansion (often with different names) has been used in many different fields,
ranging from nuclear, atomic and molecular physics to nuclear magnetic resonance and quantum
electrodynamics, mainly in connection with perturbation theory. More recently, it has also been the starting
point to construct numerical integration methods in the realm of geometric numerical integration (see [2] for a
review), when preserving the main qualitative features of the exact solution, such as its invariant quantities or the
geometric structure is at issue [3, 4]. The convergence of the expansion is also an important feature and several
general results are available [5-8].

Given the favourable properties exhibited by the Magnus expansion in the treatment of the linear problem
(1), it comes as no surprise that several generalizations have been proposed along the years. We can mention, in
particular, equation (1) when the (in general complex) matrix-valued function A(#) is periodic with period T. In
that case, it is possible to combine the Magnus expansion with the Floquet theorem [9] and construct the
solution as

Y (1) = exp(A(1)) exp(tF), (€]
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where A(t + T) = A(f) and both A(#) and F are series expansions

A(r) =D A(o), F=>F, (5)
k=1 k=1
with Ay(0) = 0 forall k. This is the so-called Floquet—-Magnus expansion [10], and has been widely used in
problems of solid state physics and nuclear magnetic resonance [11, 12]. Notice that, due to the periodicity of A,
the constant term F,, can be independently obtained as F, = (4 (T) /T for all k.

In the general case of a nonlinear ordinary differential equation in R”,

x=g(xt), x(0) = xo € R, (6)

the usual procedure to construct the Magnus expansion requires first to transform (6) into a certain linear
equation involving operators [13]. This is done by introducing the Lie derivative associated with gand the family
oflinear transformations ®, such that &,[ f] = foy,, where ¢, denotes the exact flow defined by (6) and fis any
(infinitely) differentiable map f: R* — R. The operator ®, obeys a linear differential equation which is then
formally solved with the corresponding Magnus expansion [2]. Once the series is truncated, it corresponds to the
Lie derivative of some function W(x;, £). Finally, the solution at some given time t = T can be approximated by
determining the 1-flow of the autonomous differential equation

y=wa, 1),  y0)=x

since, by construction, y (1) =~ ¢ (xo). Clearly, the whole procedure is different and more involved than in the
linear case. It is the purpose of this work to provide a unified framework to derive the Magnus expansion in a
simpler way without requiring the apparatus of chronological calculus. This will be possible by applying the
continuous transformation theory developed by Dewar in perturbation theory in classical mechanics [14]. In
that context, the Magnus series is just the generator of the continuous transformation sending the original
system (6) to the trivial one X = 0. Moreover, the same idea can be applied to the Floquet—-Magnus expansion,
thus establishing a natural connection with the stroboscopic averaging formalism. In the process, the relation
with pre-Lie algebras and other combinatorial objects will appear in a natural way.

The plan of the paper is as follows. We review several procedures to derive the Magnus expansion for the
linear equation (1) in section 2 and introduce a binary operator that will play an important role in the sequel. In
section 3 we consider continuous changes of variables and their generators in the context of general ordinary
differential equations, whereas in sections 4 and 5 we apply this formalism for constructing the Magnus and
Floquet—-Magnus expansions, respectively, in the general nonlinear setting. There, we also show how they
reproduce the classical expansions for linear differential equations. As a result, both expansions can be
considered as the output of appropriately continuous changes of variables rendering the original system into a
simpler form. Finally, in section 6 we illustrate the techniques developed here by considering two examples: the
Van der Pol oscillator and the nonlinear Schrodinger equation with periodic boundary conditions.

2. The Magnus expansion for linear systems

There are many ways to get the terms of the Magnus series (3). If we introduce a (dummy) parameter € in
equation (1), i.e., we replace A by €A, then the successive terms in

Q) = en(t) + () + V(1) + - @

can be determined by inserting {2(¢) into equation (1) and computing the derivative of the matrix exponential,
thus arrivingat [15]
. e 1 . . 1 . 1 .
eA=dexpo() =Y, ———adh() = Q + —[Q, Q] + —[Q, [Q, Q] + - 8
Po(£d) };)(k+l)! af) 2[ ] 3![ [ 11 (8)

where [A, B]denotes the usual Lie bracket (commutator) and adQB = [A, adf( 'B], ad%B = 0. At this point it is
useful to introduce the linear operator

H() =(FD> Q@)= j: [F(u), G(t)]du 9
so that, in terms of

R() = %Q(t) = eR(t) + 2Ry (t) + ’Rs(t) + -+, (10)
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equation (8) can be written as
1 1 1
6A:R+5R>R+;RDR>R+ZRI>R>R>R+-~~. (11)
Here we have used the notation

EFE>FE0p>--->E,=Fb>(@EF > - > E).

Now the successive terms R;(f) can be determined by substitution of (10) into (11) and comparing like powers of
€. In particular, this gives

Rl:A>
1 1
R=——RD>DR=—AD>A,
2 2

1 1
R3:—E(R2 >R +R >R — ERI >R >R
1 1
=—(ADA DA+ —ADAD>A
4 12
Of course, equation (8) can be inverted, thus resulting in
0=3 Badbeary, 0 =0 (12)
i—o k!

where the B;are the Bernoulli numbers, that is

B B B
x :1+B1x+_2x2+_4x4+_6x6+...
1 2! 4! 6!

e* —

1 1 1
=1—- —x+ —x*— —x*+ .-
2 12 720

In terms of R, equation (12) can be written as

s—lR:A—BlR>A+%R>R>A+%R>R>R>R>A+-~-. (13)

Substituting (10) in equation (13) and working out the resulting expression, one arrives to the following
recursive procedure allowing to determine the successive terms R(?):

) m—j .
S =1 AL 7= 30 1 ST 2<i<m =1
n =1
m—1 p.
R(t) = A(t), R, (t) = Z TJS,(HJ)(t), m = 2. (14)
j=17r

Notice in particular that
1
SV =AD A, S§1):—E(A1>A)>A, SP=A>AD A

At this point it is worth remarking that any of the above procedures can be used to write each R;in terms of the
binary operation I> and the original time-dependent linear operator A, which gives in general one term per
binary tree, asin [15, 16], or equivalently, one term per planar rooted tree. However, the binary operator >
satisfies, as a consequence of the Jacobi identity of the Lie bracket of vector fields and the integration by parts
formula, the so-called pre-Lie relation

F>G>bH-F>G >H=G>F>H-(G>F) > H, (15)

Asshown in [17], this relation can be used to rewrite each R;as a sum of fewer terms, the number of terms being
less than or equal to the number of rooted trees with j vertices. For instance, the formula for R, can be written in
the simplified form

1 1
R4:—g((A>A)>A)>A—EA>(A>A)>A

upon using the pre-Lie relation (15)for F = G > Gand H = G.
If, on the other hand, one is more interested in getting an explicit expression for 2(£), the usual starting point
is to express the solution of (1) as the series

Y(t)=1+ nz::l fAn(t)A(tl)A(tZ) < A(t,) dby -+ dty, (16)
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where
An(t) = {(tlr-ﬂtn): 0 < tn< <t1 < t} (17)
and then compute formally the logarithm of (16). Then one gets [18-21]

Q) = log V(1) = Y- (o),

n=1

with

1 1
Q) == 3 (=1 [ Ara)ACoe) =+ Al di - diy. (18)
" ges, ("* 1) A0
do
Here o € S, denotes a permutation of {1,2, ..., n }. An expression in terms only of independent commutators
can be obtained by using the class of bases proposed by Dragt and Forest [22] for the Lie algebra generated by the
1 d
Q== > (=%

operators A(fy), ... A(t,,), thus resulting in [23]
1 t L [
[ [Can [T,
n,es, (nfl) 0 0 0
dy

[A(ta(l))a [A(ta(Z)) [A(ta(n—l))) A(tn)] ]]a (19)

where now o is a permutation of {1, 2,...,n — 1}and d,, corresponds to the number descents of 0. We recall that
chasadescentiniifo(i) > o(i + 1),i=1,...,n — 2.

3. Continuous changes of variables

Our purpose in the sequel is to generalize the previous expansion to general nonlinear differential equations. It
turns out that a suitable tool for that purpose is the use of continuous variable transformations generated by
operators [ 14, 24]. We therefore summarize next its main features.

Given a generic ODE system of the form

d J—
Ex - f(xr £, (20)

the idea is to apply some near-to-identity change of variables x —— X that transforms the original system (20)
into

d

X =FX, 1), Q1)

dt
where the vector field F(X, f) adopts some desirable form. In order to do that in a convenient way, we apply a
one-parameter family of time-dependent transformations of the form

Z = \I’S(Xs t); s € R)

such that Wy(X, 1) = X, and x = ¥(X, 1) is the change of variables that we seek. In this way, one continuously
variessfroms = 0tos = 1to move from the trivial change of variables x = Xtox = W,(X, ¢), so that for each
solution X(¢) of (21), the function z(t, s) defined by z(t, s) = W(X(¥), t) satisfies a differential equation

2z =V(zst,s9). (22)
ot

In particular, we will have that F(X, t) = V(X, t,0)and f(x, 1) = V(x, t,1).
Next, the near-to-identity family of maps X —— z = U(X, ¢) is defined in terms of a differential equation
in the independent variable s,

QZ(t, s) = W(z(t s), t, 5) (23)
Os

by requiring that z(t, s) = W (z(t,0), t) for any solution z(t, s) of (23). The map W(-, ) will be near-to-identity if W
(2, t, s) is of the form
Wiz, t,5) = eWi(z, t, 5) + €*Wa(z, t, 5) +---,

for some small parameter €.

Proposition 1 ([14]). GivenFand W = eW, + W, + -+, theright-hand side V of the continuously transformed
system (22) can be uniquely determined (as a formal series in powers of € ) from V (X, t, 0) = F(X, t) and

4
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gV(x, t,s) — gW(x, 5s) =W t,)V(x t,s) — Vix t, )W, 1, s), (24)
s t

where W' and V' refer to the differentials 0. W and 0,V respectively.

Proof. By partial differentiation of both sides in (23) with respect to t and partial differentiation of both sides in
(22) with respect to s, we conclude that (24) holds for all x = z (s, t) = W(xo, t) with arbitrary x,and all (t,s).
One can show that the equality (24) holds for arbitrary (x, t, s) by taking into account that, for given tand s,
xo — x = Y(xp, t)is one-to-one.

Now, since V(x, t,0) = F(x, t), we have that

Vx, t,s) = F(x, t) + fs S(x, t, o) do, (25)
0

where § = gW + W'V — V/W.Clearly, the successive terms of
V=F+eV+eV+ -

are uniquely determined by equating like powers of € in (25). [
In the sequel we always assume that the generator W of the change of variables

(i) doesnotdepend ons,and
(i) W(x,0,s) =0, so that W,(x,0) = xand x(0) = X(0).
The successive terms in the expansion of V (x, ¢, s) in proposition 1 can be conveniently computed with the help

of a binary operation > on maps R**! — R? defined as follows. Given two such maps Pand Q, then P > Qs
anew map whose evaluation at (x, t) € R?*! takes the value

t
P Q0 = [ (Pl Q) — Q' PG, )T 26)
0
Under these conditions, from proposition 1, we have that
QV(QC, t) 5) - gw(x’ t) = [W(X, t)) V(x7 t) S)] (27)
Os ot
with the notation
(W, 1), V(x, t, 9)] :== W(x, )V (x, t, 5) — V'(x, t, )W (x, 1) (28)
for the Lie bracket.
Equation (27), in terms of
RGo, 1) = W, 1), 29)
ot
reads
9 t
—Vi(x t,5) = R(x, t) + f R'(x, )V (x, t, 5) — V'(x, t, s)R(x, T))dT
Os 0
or equivalently

S
VS:Vo+sR+R>(f w,da),
0
where we have used the notation V;(x, t) := V (x, t, s).Since V (X, t, 0) = F(X, t), then
s? 53
V(9)=sR+ R R+ = R>RE R
52. s3
+F+SR>F+?R>R>F+;R|>R>R\>F+... (30)

with the convention F; > F, > -+ > E, = F, > (F, > - > E).
We thus have the following result:

Proposition 2. A change of variables x = U\(X, t) defined in terms of a continuous change of variables
X +— z = WU(X, t)withgenerator

W(x, t) = Wix, ) + €2 Wh(x, t) + - (31)
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and W (x,0) =x, transforms the system of equations (20) into (21), wheref and F are related by
f:R+%RDR—F%RDRDR—F%RDRDRDR—&-“-
+F+R>F+%R>R>F+%R>R>R>F+~-- (32)
and R is given by (29).

Proposition 2 deals with changes of variables such that X = (X, 0) (as a consequence of W(X, 0) = X), so
that the initial value problem obtained by supplementing (20) with the initial condition x(0) = x, is transformed
into (21) supplemented with X(0) = x,.

More generally, one may consider generators W(-, t) within some class C of time-dependent smooth vector
fields such that the operator 0, : C — C isinvertible. Next result reduces to proposition 2, when one considers
some class C of generators W(:, £) such that W(x,0) =0, so that 0; : C — C is invertible, with inverse defined

as 0, 'W(x, t) = fot W (x, T)dTt.

Proposition 3. A change of variables x = V(X t) defined in terms of a continuous change of variables
X +— z = Y(X, t)with generator

W(x) t) =€ ‘/Vl(x) t) + 52 WZ(x7 t) + - (33)

within some class C of time dependent smooth vector fields with invertible 0, : C — C transforms the initial value
problem

%x =f(x 1), x(0)=xp (34)

into
d

EX =FX, 1), X(0) = "(x0), (35)

where f, F,and R = 0, W arerelated by (32), and the binary operatort> : C x C — Cisdefined as
P> Q=(;'P)Q—-Q©,'P)=19;'P, Ql. (36)

Notice that the operation > of (36) satisfies the pre-Lie relation (15), and that this proposition applies, in
particular, to the class C of smooth (27)-periodic vector fields in R? with vanishing average. In that case the
operator 0, is invertible, with inverse given by

F'W, ty=>" L kK Wex), i W(x 1) = D etk Wix).
kez 1 k keZ
k=0 k=0

4. Continuous transformations and the Magnus expansion

Consider now an initial value problem of the form

d

—X=¢ g(x) t)) X(O) = X0, (37)

dt
where the parameter ¢ has been introduced for convenience. As stated in the introduction, the solution x(¢) of
this problem (20) can be approximated at a given t as the solution y(s) ats = 1 of the autonomous initial value
problem

d '
—y =Wy, t)=c¢ f g(z, Ty dr,  y(0) = xo.
ds 0
This is nothing but the first term in the Magnus approximation of x(t). As a matter of fact, the Magnus expansion
is a formal series (31) such that, for each fixed value of ¢, formally x(t) = y(1), where y(s) is the solution of
d
—y =W, 1), y(0)=xo (38)
ds
The Magnus expansion (31) can then be obtained by applying a change of variables x = ¥ (X, t), defined in
terms of a continuous transformation X +—— z = (X, t)with generator W = W(x, t) independent of s, that
transforms (37) into
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iX =0.
dt

This can be achieved by applying proposition 2 with F(X, ) = 0and f (x, t) = eg(x, t),1.e., solving
1 1 1
eg:R+5R>R+;R>R>R+ZR>R>R>R+--- 39)
for

R(x,t) = eRi(x, t) + €2 Ro(x, t) + €3 Ry(x, t) + -

and determining the generator Was
t
W = [ Res nr (40)
0

At this point it is worth analyzing how the usual Magnus expansion for linear systems developed in section 2
is reproduced with this formalism. To do that, we introduce operators €2(t) and B(¢) such that

W(x, t) := Q)x, V(x,t,s):= Bs(t)x, gW(x, t) == R(t)x.
t

Now equation (27) reads

(ng)x — Rx = QBsx — B,Qx 41)

Os

or equivalently

B,=By+sR+ R (fngdJ), (42)

0

where the binary operation > defined in (26) reproduces (9). Since B1(f) = A(f) and By = 0, then (39) is
precisely (11). The continuous change of variables is then given by

X — z=Y(X, t) = exp (sQ(t)) X
so that
x(t) = U(X, 1) = 20X (1) = DX (0) = e%x(0)

reproduces the Magnus expansion in the linear case. In consequence, the expression for each term Wj(x, t) in the
Magnus series for the ODE (37) can be obtained from the corresponding formula for the linear case with the
binary operation (26) and all results collected in section 2 are still valid in the general setting by replacing the
commutator by the Lie bracket (28).

5. Continuous transformations and the Floquet—-Magnus expansion

The procedure of section 3 can be extended when there is a periodic time dependence in the differential
equation. In that case one gets a generalized Floquet—-Magnus expansion with agrees with the usual one when the
problem islinear.

As usual, the starting point is the initial value problem

%x =ecg(x 1), x(0)=xp (43)

where now g(x, t) depends periodically on ¢, with period T. As before, we apply a change of variables x = W;(X, 1),
defined in terms of a continuous transformation X +—— z = Y(X, t) with generator W = W(x, t) that removes
the time dependence, i.e., that transforms (43) into

%X =eG(X; e) = eGi(X) + €2 Go(X) + €% G3(X) +--,

X (0) = x,. (44)

In addition, the generator Wis chosen to be independent of s and periodic in t with the same period T.
This can be achieved by considering proposition 2 with F(X, t) := ¢G(X; €)and f (x, t) == ¢ g(x, 1),
solving (32) for the series

R(x,t) = eRi(x, t) + €2 Ro(x, t) + &> Ry(x, t) + -
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Thus, for the first terms one gets
Ri=g—-G

1
R2:——R1[>R1—R1[>G1—G2
2
1 1
R3:75(R1|>R2+R2 I>R1)+§R1l>R1I>R1
1
7R1I>G27R2|>G175R1>R1[>G17G3

and, in general,
R =U - G, i=12..., (45)

where Uj only contains terms involving g or the vector fields U,, and G,,, of alower order, i.e., with m < j. This
allows one to solve (45) recursively by taking the average of U; over one period T, i.e.,

1 T
GO = (U, ) = = [ G e,

thus ensuring that R; is periodic. Finally, once G and R are determined, W is obtained from (40), which in turn
determines the change of variables.

If we limit ourselves to the linear case, g(x, ) = A(#) x, with A(t + T) = A(t), then, by introducing the
operators

Wx, t) == A(H)x, V(x t,5s):=B,(t)x, GX):=FX,

the relevant equation is now
35=F+5A+A>(f Bgda), (46)
0

which, with the additional constraint B,(t) = A(¢), leads to
Al = A - F]
. 1. . h
AZZ—EAI >AN-MN>F-—-F

and so on, i.e., exactly the same expressions obtained in [10]. The transformation is now
x(t) = (X, t) = 20X (1) = erDex(0)

thus reproducing the Floquet—Magnus expansion in the periodic case [10].
Several remarks are in order at this point:

1. This procedure has close similarities with several averaging techniques. As a matter of fact, in the quasi-
periodic case, it is equivalent to the high order quasi-stroboscopic averaging treatment carried out in [25].

2. Although both the Magnus and the Floquet—Magnus expansions are convergent in the linear case (1) for
bounded A, the situation is far more involved in the general nonlinear case. In particular, the formal series
expansions carried out in [25] to determine the averaged system corresponding to equation (43) and the
change of variables do not converge in general. By the same token, convergence of the Floquet-Magnus
expansion cannot be expected in the nonlinear case, although the same type of estimates for error bounds
when the series are truncated can be presumably be derived.

3. A different style of high order averaging (that can be more convenient in some practical applications) can be
performed by dropping the condition that W(x, 0) = x, and requiring instead, for instance, that W{(x;, t) has
vanishing average in t. In that case, the initial condition in (44) must be replaced by X (0) = W '(x¢). The
generator W(x, t) of the change of variables and the averaged vector fields G (x, t) can be similarly
computed by considering proposition 3 with the class C of smooth quasi-periodic vector fields (on R? or on
some smooth manifold) with vanishing average.

4. The Floquet—Magnus expansion in the linear case provides by construction the structure furnished by the
Floquet theorem and has found wide application in periodically driven quantum systems, when there is
need not only of determining the effective time-independent Hamiltonian H,, but also the fluctuations
around the evolution due to H,, whereas the standard Magnus expansion only provides H, when it is
determined at multiples of the period. In the nonlinear case the Floquet—-Magnus expansion leads both to
the averaged system and the required transformation.

8
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6. Examples of application

The nonlinear Magnus expansion has been applied in the context of control theory, namely in non-holonomic
motion planning. Several models in robotics, such as mobile platforms, free-floating robots, etc., can be
described by the system

m
1) = A = 3 g@us, (47)
i=1
where x = (xi,...,x,)" is the configuration, u;,i = 1, ..., mare the controls, m < n,and the g;are smooth vector
fields. A typical motion planning task is to find controls u; that steer the system from a given initial configuration
Xo to afinal one xx With these requirements, the (nonlinear) Magnus expansion allows one to express, locally
around Xy, the solution of (47) as x(f) = y(1), where y(s) is the solution of equation (38). In this way, one formally
gets all admissible directions of motions in terms of control parameters, so that (a) one can easily select the
motion in a desired direction and then (b) determine the control parameters in the optimal way that steer the
non-holonomic system into that direction [21, 26, 27]. In this sense, expression (19) and the corresponding one
for the generic, nonlinear case, can be very useful in applications, since it only contains independent terms
[27,28]. This problem is also closely connected with the calculation of the logarithm of the Chen—Fliess
series [29].
As mentioned previously, the general Floquet—-Magnus can also be applied in averaging. A large class of

problems where averaging techniques are successfully applied is made of autonomous systems of the form

= Au + eh(u), u(0) = xo, (48)
where h is a smooth function from R” to itself (or more generally from a functional Banach space E space to
itself) and A is a skew-symmetric matrix M (IR") (or more generally a linear operator on E) whose spectrum is
included in ZTWZ. Denoting x = e *Au and differentiating leads to

%= —Ae "y + e = ce " h(ex)
so that x now satisfies an equation of the very form (43) with
g(x, t) = e "h(etx).
The T-periodicity of g with respect to time stems from the fact that Sp(A) C %Z. For this specific case, relation
(45) leads to the following expressions

Gl(X) = <g(X> )>) (49)
1 t
Gy (X) = —5< j; [g(X, 7), g(X, 1)] dr>, (50)
G3(X) = %< fO [ [g(x, ), j; g(X, o), g(X, t)]da]dr>
1 t T
+ Z<«f0 [L [gX, 0), g(X, ™)ldo, g, t)]d7'>. (51)

If g(x, 1) is a Hamiltonian vector field with Hamiltonian H(x, £), then all G;’s are Hamiltonian with Hamiltonian
H;’s. These Hamiltonians can be computed through the same formulas with Poisson brackets in lieu of Lie
brackets (see e.g. [3]).

6.1. Dynamics of the Van der Pol system
As afirst and elementary application of previous results, we consider the Van der Pol oscillator, which may be
looked at as a perturbation of the simple harmonic oscillator:

q=rp

) : (52)
{p =-q+e(l—q)p

Clearly, the system is of the form (48) with u = (g, p)",

(0 1 _ 0
A—(i1 0) and h(u)_((l—ulz)uz)’

and is thus amenable to the rewriting (43), where

g(x, 1) = e h(ex) and e = ( cos(t) sin(t)).

—sin(t) cos(t)
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Figure 1. Trajectories of the original Van Der Pol system (in red) and of its averaged version up to second order (in blue).

In short, we have
x=e&@)V,
where
—sin(t) . 2 .
Vi = cos() and & (x) = (1 — (cos(t)x; + sin(f)x)*)(—sin(t)x + cos(t)x).
Previous formulas give for the first term in the procedure
1 2
1 2 =Xz — X (IXI2 - 4)
GI(X) = —f EXOVedr=| 7 _ X =9,
2m Jo —3UX[E = HX 8
and itis then easy to determine an approximate equation of the limit cycle, i.e. || X||, = 2. As for the dynamics of
the first-order averaged system, it is essentially governed by the scalar differential equation on N (X) := || X|[3
d . . N(N —4
EN(X) =2(XX + XX = *5¥,

which has two equilibria, namely || X||, = 0and || X||, = 2. The first one is unstable while the second one is
stable. However, the graphical representation (see figure 1) of the solution of (52) soon convinces us that the true
limit cycle is not a perfect circle. In order to determine a better approximation of this limit cycle, we thus
compute the next term of the average equation from formula (50):

_1 2T t
G0 = fo fo (& (Yl V) Vi — €.(VkE,y Vo) V)dr

— 25 X2(32 — 24 X7 + 5 X} — 88 X7 + 21 X! + 10 X°X3)
| Lx1 X+ 32 — 88 X2 + 40 X2 + 10 X2X2 + 5 X

256
52
=-——DX)JX,

256

where
DEX) — 32 — 24 X7 4+ 5X5 — 88 X2 + 21 X' + 10 X2 X} 0
0 Dy1(X) + 64X}
and
(01
—(0) =

10
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Now, considering the new quantity L(X) = N (X) + €Q(X) with
QX) = vX, X5,

we see from the second-order averaged equation

. X[ -4 2
X:—E(H 2 )X—E—D(X)]X,
8 256
that
dL dN ,
—=—+e(KQ, X
& (VxQ, X)
NN -4 g’ ,N—4
=—e——F — — X, DX)JX) — ¢ VxQ, X
2 128( X)JX) 5 (VxQ, X)
_ 2
_ LY gy Sarte2lo-2la - wo+ oy
4 2 2v 2
= _EM + OEY)
4
forv = — % A more accurate description of the limit cycle is thus given by the equation

13
XI5 =4+ EXIXS-

6.2. The first two terms of the averaged nonlinear Schrodinger equation (NLS) on the d-dimensional torus
Next, we apply the results of section 5 to the nonlinear Schrodinger equation (for a introduction to the NLS see
for instance [30-32])

0 =N + k(@ - D), t>0, zeTY,
P(0, z) = Yy(2) € E,

where T¢ = [0, a]? and E = H*(T?) is our working space. We hereafter conform to the hypotheses of [33] and
assume that h is a real-analytic function and thats > d/2, ensuring that Eis an algebra’. The operator —A is self-
adjoint non-negative and its spectrum is

2 d 2
o(A) = {(2_77) Ylsle Zd} C (2—”) N, (54)
a) o a

so that by Stone’s theorem, the group-operator exp(itA) is periodic with period T = % We may thus rewrite
Schrodinger equation as we did with equation (48). However, we shall instead decompose

Y(t, z) = q(t, z) + ip(t, z) initsreal and imaginary parts and derive the corresponding canonical system in
the new unknown

u(t, ) = (p * ')) € H(T%) x H*(TY),
q(t) )

thatis to say

1t = J 'Diag(— A, —A)u + sk(HuHﬁz)]‘]u, u(0) = (52), (55)

where we have denoted 11 = 0,u, || u||@2Rz = (u)? 4+ (u?)? = (u, u)g (u" and u” are the two components of 1), J
is given by (53) and
-A 0
D= .
( 0o - A)

The operator Dif self-adjoint on L2(T%) x L2(T¢)and an obvious computation shows
oD _ cos(tA) sin(tA)
—sin(tA) cos(tA)
sothat e’ AP isa group of isometries on L (']I‘Z) x L? (TZ) aswellason H® (TZ) x H* (TZ). Owingto (54) itis
furthermore periodic (forallt, R,, r = R,), withperiod T = % The very same manipulation as for the
prototypical system (48) then leads to

= D

5 Under all these assumptions, for all initial value 1)y Eand alle > 0, there exits a unique solution ¢ € C([0, b/e[,E) for someb > 0
independent of € [33].

11
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X =eg(x t), x = (S;’)

with
gCx, 1) = J e Ph([le” Px|2.)e” Px = Rypr/a k(|[Rex|22) Rex.
Now, it can be verified that
g, t) = J'ViH(x, 1),

where

Hx, 1) = %de K(|R 0t 2|R)dz with K (r) = fo k(o)do. (56)

Remark 1. Recall that the gradient is defined w.r.t. the scalar product (-,-) on L2(T%) x L2(T¢) that we redefine
for the convenience of the reader: for all pair of functions x; and x, in L? (’]I‘Z) x I? ('H‘Z),

(0, ) = fT , (1 @0(2) + 6 ()3 (@) dz = L (), Bz
where x;' and x;” are the two components of x, and similarly for x,. Hence, by definition of the gradient, we have
that

Y(t, x, ) € T X E3, (VeH (3, 1), %) = OxH (xi, £) %.
Furthermore,
V(t, x, %) € T x E, (Re x1, %) = (1, Ry %)
and
V0, %, %) € B (JO:g(x, D)X, X3) = (%, JOxg (1, 1)X3).
Finally, if ¢, and ¢, are hamiltonian vector fields, with Hamiltonians ®; and ®,, then
(¢ 03] = Oxd 1B, — Oxyby = T 'Vx (P, D)
where the Poisson bracket is defined by
{D1, 2} = Uy, ¢).
Now, the first term of the averaged vector field G (X, ¢) is simply
Gi(X) = (Ryr/ak(||R X[i2.) R X).

In order to obtain the second term, we use the simple fact that for any § € H*(T¢) the derivatives w.r.t. x in the
direction 6 may be computed as

OuCk(IR, ¥[22) - 6 = K(|R, x|2) (]IR, x[22) - 6
= Zk,(HRt xHDZQZ) (Rt x, Ry O)p2

so that

0u(g(x, 1) - 6 = Revrsa k(||Re x|2)R; §
+ 2R 74 k/(”Rt x”IZRz) (Rt x, Ry O)2 Ry x.

Inserted in the expression of G, we thus obtain the following expression for the 2-term of the averaged equation
6:00 = ~2{ [ 190t 71 g 06, Dldr) = 00 + O
with
R = —§< I Revrs KR R s KR DR, xdT>

t
4 < I R KR Re /4 KRR, xdT>

N | —

12
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and

t
LX) =— <f0 Reirya K ([[Rx([%2) (Rr %, Rrseor/ak([[Rex[[22) Rex)g2 R~ xdT>

t
+ <f0 Riirys k’(||Rtx||D2§2) (R; x, RT+t+T/4k(||RTx||§§2)Rrx)Rz R; xd7>-

As already mentioned, both G; and G, are Hamiltonian with Hamiltonian H; and H, which could have been
equivalently computed from H(x, ) in (56) (see remark 1).
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