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Abstract Using a Newtonian model of the Solar System with all 8 planets, we perform
extensive tests on various symplectic integrators of high orders, searching for the best splitting
scheme for long term studies in the Solar System. These comparisons are made in Jacobi
and heliocentric coordinates and the implementation of the algorithms is fully detailed for
practical use. We conclude that high order integrators should be privileged, with a preference
for the new (10, 6, 4) method of Blanes et al. (2013).

Keywords Symplectic integrators · Hamiltonian systems · Planetary motion · Jacobi
coordinates · Heliocentric coordinates · Splitting sympletic methods

A. Farrés · J. Laskar (B)
Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR8028,
Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France
e-mail: laskar@imcce.fr

A. Farrés
e-mail: afarres@imcce.fr

S. Blanes
Instituto de Matemática Multidisciplinar, Universitat Politècnica de València,
46022 Valencia, Spain
e-mail: serblaza@imm.upv.es

F. Casas
Departament de Matemàtiques, Institut de Matemàtiques i Aplicacions de Castelló,
Universitat Jaume I, 12071 Castellón, Spain
e-mail: Fernando.Casas@uji.es

J. Makazaga · A. Murua
Konputazio Zientziak eta A.A. saila, Informatika Fakultatea, UPV/EHU,
Donostia/San Sebastián, Spain
e-mail: Joseba.Makazaga@ehu.es

A. Murua
e-mail: Ander.Murua@ehu.es

123



142 A. Farrés et al.

1 Introduction

Due to their simplicity and stability properties, symplectic integrators have been widely
used for long-term integrations of the Solar System, starting with the work of Wisdom and
Holman (1991). In many studies on the formation and evolution of the Solar System, where
large numbers of particles are considered, the speed of the integrator is a major constraint and
low order schemes have been often used as in the original scheme of Wisdom and Holman
(1991) or Kinoshita et al. (1991) (for a review see Morbidelli 2002).

On the opposite, in the present work we are focusing on high precision symplectic inte-
grators that are designed for the computation of long term ephemerides of the Solar System,
when one searches to reduce the numerical error of the algorithm to the level of the roundoff
error of the machine. These integrators will also be useful for the detailed dynamical studies
of the extra solar planetary system with strong planetary interactions.

The first long term direct numerical integration of a realistic model of the Solar System,
including all planets and the effects of general relativity and the Moon was made twenty
years ago over 3 Myr (Quinn et al. 1991) using a high order symmetric multistep method.
This solution could be compared with success with the previous averaged solutions of Laskar
(1989, 1990a) and confirmed the existence of secular resonances in the Solar System (Laskar
et al. 1992). Soon after, using a symplectic integrator with mixed variables (Wisdom and
Holman 1991), Sussman and Wisdom (1992) could extend these computation to 100 Myr,
confirming the chaotic behaviour of the Solar System discovered with the secular equations
by Laskar (1989, 1990a).

As the Solar System is chaotic, the error in numerical integrations is multiplied by 10 every
10 Myr (Laskar 1989). Due to the limited accuracy of the models and initial conditions, it is
thus hopeless to obtain a precise solution for the evolution of the Solar System over more
than 100 Myr. The situation is even worse when the full Solar System is considered, as
close encounters among the minor planets induce strong chaotic effects that will limit all
possibilities of computing a precise solution for the planets to about 60 Myr (Laskar et al.
2011a,b).

Despite this limitation, there is a strong need for precise ephemerides of the planets from
the paleoclimate community. Indeed, the variations of the Earth orbital elements induce
some changes in the Earth climate that are reflected in the sedimentary records over million
of years. This mechanism, known as Milankovitch theory (Milankovitch 1941) allows now
to use the astronomical solution for the calibration of the geological time scales through
the correlation of the variation of orbital and rotational elements of the Earth to geological
records. This method has been successfully used for the Neogene period (Lourens et al.
2004) over 23 Myr, and a large effort is pursued at present to extend this study over the full
Cenozoic era, up to about 65 Myr. This quest led to search for high order symplectic schemes
that are adapted to these long time computations, where high accuracy is requested (Laskar
and Robutel 2001; Laskar et al. 2004, 2011a), but it should be noted that in the latest work,
the integration of the Solar System model over 250 Myr,1 including five main asteroids took
more than 18 months of CPU time. Some improvements of the algorithms were thus needed,
and the present paper is the outcome of the studies that we have undertaken in order to search
for the best integrators for the next generations of numerical solutions. At the same time, we
have compared various sets of coordinates (heliocentric and Jacobi), as the performances of
these integrators depend on the choice of splitting of the Hamiltonian, and thus of the set of

1 Although it has been demonstrated that a precise solution of the motion of the Earth cannot be computed
over more than 60 Myr (Laskar et al. 2011b), the solutions are systematically computed over 250 Myr as some
features of the solutions can be trusted over longer times (Laskar et al. 2004, 2011a).
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High precision symplectic integrators 143

coordinates that correspond to these various splittings. As the integrators that are presented
here are of high order, they can also be used for refined analysis of the newly discovered extra
solar planetary systems, especially when the planetary interactions in the system are strong.

For the planetary case, when using an appropriate set of coordinates, the equations of
motion are written as an integrable part HA, that corresponds to the Keplerian motion of
each planet, and a small perturbation HB , given by the interaction of the planets between
each other. Hence, the system falls into the category of Hamiltonian system of the kind
H = HA + εHB .

Several splitting integrating schemes that take advantage of this fact to derive efficient
integrators exist in the literature. McLachlan (1995) was the first to present such schemes
and was followed independently by Chambers and Murison (2000) and Laskar and Robutel
(2001). Most recently (Blanes et al. 2013) derived higher order schemes that present very
interesting behaviour.

In this paper we describe these different splitting symplectic schemes and compare them
for the case of the Solar System dynamics. We want to see which are the most efficient and
accurate schemes. We will consider the gravitational N-body model and test the different
integrating schemes against different planetary configurations, to be more specific: the 4
inner planets, the 4 outer planets and the 8 planets in the Solar System (Sect. 4).

The Hamiltonian of the gravitational N-body problem H = T (p)+U (q) can be rewritten
as H = HA + εHB , using two different set of canonical coordinates: Jacobi and heliocentric
coordinates (Sect. 3). The main difference between both sets of equations is that in Jacobi
coordinates the small perturbation HB depends only on positions while in heliocentric coor-
dinates the perturbation depends on both position and velocity. This is why in the literature
Jacobi coordinates have been more widely used. In Sect. 5 we describe different symplectic
schemes for Jacobi coordinates, and in Sect. 6 other symplectic schemes that are suitable
for heliocentric coordinates. In both sections we describe and compare the different splitting
schemes. Finally in Sect. 7 we compare the results for the two different set of coordinates.

2 Splitting symplectic integrators (general overview)

Let H(q, p) be a Hamiltonian system where (q, p) are a set of canonical coordinates (i.e. q
are the positions and p the momenta). It is well known that in many mechanical problems
the Hamiltonian is of the form

H(q, p) = T (p)+ U (q),

which is separable with respect to the local canonical coordinates. Using the Lie formalism
we can write the equations of motion as:

dz

dt
= {H, z} = L H z, (1)

where by definition Lχ f := {χ, f } is the differential operator Lχ , z = (q, p) and {·, ·}
denotes the Poisson bracket.2

The formal solution of Eq. 1 at time t = τ0 + τ that starts at time t = τ0 is given by

z(τ0 + τ) = exp(τ L H )z(τ0) = exp(τ (LT + LU ))z(τ0). (2)

2 {F,G} = ∑n
i=1

∂F
∂pi

∂G
∂qi

− ∂F
∂qi

∂G
∂pi

.

123



144 A. Farrés et al.

In general the operators LT and LU do not commute, exp(τ (LT + LU )) �= exp(τ LT )

exp(τ LU ), but we can find coefficients ai , bi such that for a given r ,

exp(τ (LT + LU )) =
s∏

i=1

exp(aiτ LT ) exp(biτ LU )+ O(τ r+1). (3)

Using the Baker–Campbell–Hausdorff (BCH) identity we can find relations that the coef-
ficients ai , bi must satisfy to have a high order scheme (Koseleff 1993b, 1996). These are
the so-called order conditions. For a given set of coefficients ai , bi satisfying Eq. 3, the
composition

z(τ ) = S(τ )z(τ0) =
s∏

i=1

exp(aiτ LT ) exp(biτ LU )z(τ0), (4)

is a symplectic map of order r .
The map S(τ ) is symplectic because it is the product of elementary symplectic maps,

exp(τ LT ) and exp(τ LU ), and has order r because it approximates the exact solution up to
order τ r . We will refer to these kind of symplectic schemes as splitting symplectic integrators.

Some of the main advantages of these kind of integrating schemes are: (a) they are very
easy to implement; (b) they preserve the symplectic character of the Hamiltonian system;
and (c) in general there is no systematic drift on the conservation of the energy during the
numerical integration.

These kind of symplectic schemes have been widely studied throughout the years by sev-
eral authors (see Hairer et al. 2006; McLachlan and Quispel 2002 and references therein).
As a matter of fact, splitting methods have been designed (often independently) and exten-
sively used in fields as diverse as molecular dynamics, simulations of storage rings in particle
accelerators, quantum chemistry and, of course, Celestial Mechanics.

There are several procedures to get the order conditions for the coefficients of the splitting
scheme in Eq. 4. These are, generally speaking, large systems of polynomial equations in the
coefficients that are obtained from Eq. 3. Two of the most popular are the recursive application
of the BCH formula to the composition in Eq. 4, and a generalisation of the theory of rooted
trees used in the analysis of Runge–Kutta methods due to Murua and Sanz-Serna (1999) (see
also Hairer et al. 2006). The latter procedure, while being more systematic than the former, is
however not appropriate for the case of splitting methods applied to Hamiltonians of the form
A + εB. In Blanes et al. (2013) a novel systematic way is proposed based on the so-called
Lyndon multi-indices that is well adapted to that case.

Splitting methods of order greater than two involve necessarily some negative coefficients
ai and b j (Goldman and Kaper 1996; Sheng 1989; Suzuki 1991). Although this feature does
not imply in principle any special impediment for the class of systems considered in this
paper, it is clear that the presence of negative coefficients may affect the numerical error and
the maximal step size of the scheme. For this reason, when dealing with high order methods,
minimising the size of the negative coefficients and the sum of the absolute value of all the
coefficients will be a critical factor in the choice of one particular set of coefficients.

In this paper we do not intend to give the details on the derivation of the order conditions
or how to find these coefficients. All these issues are analysed in detail in Blanes et al. (2013).
Our aim here is to compare the performance of different splitting symplectic schemes for the
specific case of the integration of the Solar System.

If we focus on the motion of the Solar System, or other planetary systems, we have a
main massive body in the centre (the Sun) and the other bodies evolve around the centre
mass following almost Keplerian orbits. We can take advantage of this to build more efficient
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High precision symplectic integrators 145

schemes. Using an appropriate change of coordinates we can rewrite the Hamiltonian as,
H = HK + HI (where |HI | � |HK |), a sum of the Keplerian motion of each planet around
the central star and a small perturbation due to the interaction between the planets, where
HK and HI are integrable.

Wisdom and Holman (1991), Kinoshita et al. (1991) were the first to split the Hamiltonian
of the N-body problem in this way for numerical simulations of the Solar System, by means
of what is called a mixed variable integrator, using elliptical coordinates to integrate the
Keplerian motion. Splitting the Hamiltonian as HK +HI rather than the classical T (p)+U (q)
decomposition3 already improves the performance of the leapfrog scheme. As |HI | is small
with respect to |HK |, the system falls into the class of Hamiltonian such that H = HA +εHB

for ε small. In this particular case, the truncation order of the leapfrog scheme is no longer
Cτ 3 as for T (p)+ U (q), but rather C ′ετ 3 (McLachlan 1995; Laskar and Robutel 2001).

In Sects. 5 and 6 we will describe different families of symplectic splitting methods for
Hamiltonian systems of the kind HA + εHB and we will compare their performance for the
particular case of the Solar System dynamics.

3 The N-body problem

Throughout this article we consider the non-relativistic gravitational N-body problem as a test
model for the different integrating schemes. We are aware that to have a realistic model for
the Solar System dynamics one must include effects like general relativity or tidal dissipation.
Nevertheless, and for the sake of simplicity, in this paper these effects are ignored as their
presence should not compromise the performance of the schemes presented here.

In a general framework, we consider the motion of n + 1 particles: the Sun and n plan-
ets, that are only affected by their mutual gravitational interaction. Let u0,u1, . . . ,un and
u̇0, u̇1, . . . , u̇n be the position and velocities, in a barycentric reference frame, of the n + 1
bodies and let m0,m1, . . . ,mn be their respective masses. For simplicity, we consider m0 to
be the mass of the Sun and mi for i = 1, . . . , n the mass of the other planets.

Taking the conjugated momenta ũi = mi u̇i, the equations of motion are Hamiltonian,
with:

H = 1

2

n∑

i=0

||ũi||2
mi

− G
∑

0≤i< j≤n

mi m j

||ui − uj|| . (5)

In this set of coordinates the Hamiltonian naturally splits into, H = T +U , where T depends
only on the momenta (ũi) and U depends only on the positions (ui).

In general, when we deal with complex dynamical systems, it is important to take into
account the relevant aspects of the system and use them to build efficient numerical tools
to describe their dynamics. In the case of the Solar System we have a massive body in the
centre and the planets evolve following Keplerian orbits around it that vary through time due
to their mutual interaction.

Using an appropriate change of variables the Hamiltonian can be written as HK + HI ,
where |HI | is small with respect to |HK |, and both parts are integrable when we considered
them on their own. There exist two canonical set of coordinates that allow us to split the
Hamiltonian in this way: Jacobi and heliocentric coordinates.

3 A long term integration of the outer planets was performed over 22.5 Myr by Gladman and Duncan (1990)
using a T (p)+ U (q) decomposition with the fourth order symplectic scheme of Candy and Rozmus (1991).
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3.1 Jacobi coordinates

The Jacobi set of coordinates has been widely used in Celestial Mechanics for developing
analytical theories for the planetary motion. It was first used for the numerical integration of
the Solar System by Wisdom and Holman (1991).

Here the position of each planet, vi for i = 1, . . . , n, is considered relative to the barycentre
Gi−1 of the previous i bodies, u0, . . . ,ui−1, and v0 is taken as the centre of mass of the system:

v0 = (m0u0 + · · · + mnun)/ηn

vi = ui − (
∑i−1

j=0 m j uj)/ηi−1

}

, (6)

where ηi = ∑i
j=0 m j . To have a canonical change of variables the momenta ṽi for i =

0, . . . , n, must be:

ṽ0 = ũ0 + · · · + ũn

ṽi = (ηi−1ũi − mi
∑i−1

j=0 ũj)/ηi

}

. (7)

In this set of coordinates the Hamiltonian in Eq. 5 takes the form (Laskar 1990b):

HJb =
n∑

i=1

(
1

2

ηi

ηi−1

||ṽi||2
mi

− G
miηi−1

||vi||
)

+ G

⎡

⎣
n∑

i=2

mi

(
ηi−1

||vi|| − m0

||ri||
)

−
∑

0<i< j≤n

mi m j

Δi j

⎤

⎦ ,

(8)

whereΔi j = ||ui − uj|| (the distance between the two bodies) can be expressed as a function
of vi and vj, and ri = ui − u0. If we fix the centre of mass at the origin then v0 = 0 and
ṽ0 = 0, and we reduce by 6 the number of equations of motion.

3.2 Heliocentric coordinates

Here we consider the relative position of each planet with respect to the Sun:

r0 = u0
ri = ui − u0

}

, (9)

and to have a canonical change of variables the momenta are:

r̃0 = ũ0 + · · · + ũn
r̃i = ũi

}

. (10)

In this set of coordinates the Hamiltonian in Eq. 5 takes the form (Laskar 1990b):

HHe =
n∑

i=1

(
1

2
||r̃i||2

[
m0 + mi

m0mi

]

− G
m0mi

||ri||
)

+
∑

0<i< j≤n

(
r̃i · r̃j

m0
− G

mi m j

Δi j

)

, (11)

where Δi j = ||ri − rj|| for i, j > 0. If we consider the centre of mass of the system to be
fixed at the origin we have that r̃0 = 0, and we can easily recompute r0 at all time. Hence,
we have also reduced by 6 the number of equations of motion.

One of the main differences between these two sets of coordinates is the size of the per-
turbation which in the case of Jacobi coordinates is smaller than for heliocentric coordinates
(see Table 1 in Sect. 4).
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High precision symplectic integrators 147

Moreover, in the case of Jacobi coordinates the perturbation part (HI ) depends only on
positions so it is integrable when we consider it alone. But the expressions are more cumber-
some than for heliocentric coordinates (see Appendix B). While in the case of heliocentric
coordinates the perturbation part depends on both position and velocities, hence it is not
integrable on its own. In Sect. 6 we will show how to adapt the splitting schemes to this
particular case.

4 Test to perform

Let S(τ ) = ∏s
i=1 exp(aiτ A) exp(biτ B) be a splitting symplectic scheme. We say S(τ ) has s

stages if it requires s evaluations of exp(τ A) exp(τ B) per step-size. The smaller the step-size
τ used, the smaller is the error of the numerical solution provided by the scheme, and the
larger is the computational cost, as more evaluations of exp(τ A) exp(τ B) are required to
integrate over the same time period.

Usually, the higher the order of the scheme the more number s of stages it requires,
increasing the computational cost to advance a given step-size τ . So a method with 4 stages
will be more efficient than one with 2 stages if it can achieve a given accuracy with a step-
size which is at least two times larger than the one required for the 2-stages scheme. In this
sense, we define the inverse cost of S(τ ) as τ/s, where s is the number of stages and τ is the
step-size used. Thus, if one scheme achieves the same precision than another scheme with
smaller inverse cost, then we can say that the former is more efficient than the latter.

It is known that, for sufficiently small step-sizes τ , the method S(τ ) integrates exactly
(up to exponentially small errors that are below machine accuracy) a modified Hamiltonian
system that is close to the original one. Measuring the maximum variation of the energy
along a given orbit will gives us a good idea of how close is that modified Hamiltonian to the
original Hamiltonian.

Motivated by that, in all our numerical tests, we measure the relative precision of
a given scheme applied with a given step-size τ by computing the maximum variation
(Ei = max{|H(t0) − H(t)|}) of the energy along a given numerical orbit obtained over
105 steps of the method (with the same initial conditions at the initial time t0) and plot Ei

versus the inverse cost τ/s (both in logarithmic scale). To fix criteria we will always consider
step-sizes of the form: τi = 1/2i for i = 0, . . . , N .

We are interested in very precise integrations of the Solar System, hence the main goal
is to determine for each scheme the maximum step-size (τi ) required to have an error in the
energy variation up to machine accuracy.

Through the paper we consider three test models that we believe illustrate different partic-
ularities of the Solar System and can be extrapolated to other planetary systems. These are:
a) the motion of the 4 inner planets (Mercury to Mars); b) the motion of the 4 outer planets
(Jupiter to Neptune) and c) the motion of the 8 planets on the Solar System (Mercury to
Neptune). The initial conditions and mass parameters have been taken from the INPOP10a
Solar System ephemerides (Fienga et al. 2011) (www.imcce.fr/inpop/).

Table 1 shows estimates on the size of the perturbation for these three examples for
both sets of coordinates Jacobi and heliocentric. To estimate the size of the perturbation
we have integrated each system over 100 years and computed the maximum values for |HI |
and |HK | along this integration. Here HKep represents the size of the Keplerian part and
H1max the size of the perturbation part and the estimated size of the perturbation is given
by ε = H1max/HKep.
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Table 1 Size of the perturbation in Jacobi and heliocentric coordinates for the three test examples considered
in this work: 4 inner planets (Mercury to Mars), first line; 4 outer planets (Jupiter to Neptune), second line; 8
planets on the Solar System (Mercury to Neptune), third line

Jacobi Coord. Heliocentric Coord.

HKep H1max ε HKep H1max ε

1.3945E-04 6.3342E-10 4.5420E-06 1.3945E-04 9.1652E-10 6.5720E-06

4.2924E-03 8.7162E-07 2.0306E-04 4.2920E-03 2.7184E-06 6.3336E-04

4.4319E-03 8.7158E-07 1.9666E-04 4.4314E-03 2.8042E-06 6.3281E-04

We note that all the simulations in this article have been done using an extended real
arithmetics and that we use the compensated summation during the intermediate evaluation
of exp(aiτ A) and exp(biτ B) (see Appendix A).

5 Splitting symplectic integrators for Jacobi coordinates

In Sect. 3 we have seen that with an appropriate change of variables we can rewrite the
Hamiltonian of the N-body planetary system as HK + HI where |HI | � |HK |. Hence, the
system falls into the class of Hamiltonian that can be expressed as

H = HA + εHB , (12)

with |ε| � 1. We can take advantage of this to build efficient high-order splitting symplectic
integrators (McLachlan 1995; Laskar and Robutel 2001). In this section we summarise the
main ideas behind these methods and review some of the most relevant schemes.

Using the Lie formalism the formal solution of Eq. 12 is:

z(τ ) = exp[τ(A + εB)]z(τ0), (13)

where to simplify notation we use A ≡ {HA, ·} = L HA , B ≡ {HB , ·} = L HB . We recall
that HA and HB are integrable, hence we can compute explicitly exp(τ A) and exp(τεB).
To have a splitting symplectic integrator of order r , we need to find the coefficients ai , bi

such that

Sr (τ ) =
s∏

i=1

exp(aiτ A) exp(εbiτ B), (14)

satisfies |Sr (τ ) − exp[τ(A + εB)]| = O(τ r+1). The Baker–Campbell–Hausdorff (BCH)
theorem ensures us that Sr (τ ) = exp(τH), where H is also a Hamiltonian system and
belongs to the free Lie algebra generated by A and B, L(A, B). Moreover, we can express
H as a double asymptotic series in τ and ε:

τH = τp1,0 A + ετp1,1 B + ετ 2 p2,1[A, B] + ετ 3 p3,1[[A, B], A]
+ ε2τ 3 p3,2[[A, B], B] + ετ 4 p4,1[[[A, B], A], A]
+ ε2τ 4 p4,2[[[A, B], B], A] + ε3τ 4 p4,3[[[A, B], B], B] + · · · , (15)

where pi, j are polynomials in ak and bk .
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High precision symplectic integrators 149

To have a symplectic scheme of order r we need:

p1,0 = a1 + a2 + · · · + as = 1,

p1,1 = b1 + b2 + · · · + bs = 1,

pi, j = 0, ∀i, j ≤ r.

The scheme Sr (τ ) is symmetric if it verifies S−1
r (τ ) = Sr (−τ), in which case all the

even terms in τ in Eq. 15 vanish, having less conditions to satisfy for a scheme of a given
order, r , enabling us to find high-order schemes at lower computational cost. There are two
different types of symmetric compositions (Eq. 14): one in which the first and last exponentials
correspond to the A part (and thus called ABA composition),

ABA : ea1τ A eεb1τ B ea2τ A . . . ea2τ A eεb1τ B ea1τ A (16)

and the other in which the role of exp(τ A) and exp(ετ B) is interchanged (BAB composition):

BAB : eεb1τ B ea1τ A eεb2τ B . . . eεb2τ B ea1τ A eεb1τ B . (17)

All the integration schemes that we present in this paper correspond to the ABA class. For
the experiments carried out, we have not found substantial differences in the efficiency with
respect to methods in the BAB class.

Notice that for symmetric methods, the last exponential at one step can be concatenated
with the first one at the next integration step when the method is iterated, so the number of
exponentials exp(τ A) and exp(ετ B) per step is s, the number of stages.

It is clear that in many cases |ε| � τ (or at least ε ≈ τ ). So we can have high-order
schemes by only killing the error terms with small powers of ε, and save computational cost
by reducing the number of stages of the method.

Depending of the nature of the problem we can try to find the appropriate terms in εiτ p

that must vanish in order to have an optimal performance. For example, if we consider a
method such that the coefficients ai , bi satisfy p1,0 = p1,1 = 1 and p2,1 = p3,1 = p4,1 = 0,
then,

|H − (A + εB)| = O(ετ 4 + ε2τ 2),

but as |ε| � τ this method is of effective order 4. In a more general context we will have
methods such that,

|H − (A + εB)| = O(ετ s1 + ε2τ s2 + ε3τ s3 + · · · + εmτ sm ). (18)

We remark that s1 is the order of consistency for the scheme, i.e. is the error behaviour in the
limit case ε → 0. Nevertheless, in many cases for small step-sizes the method can behave
as one of order s2. In what follows we will refer to the generalised order of a method in
terms of the order in powers of ε. Hence, we will say that a method has order (s1, s2) if
|H − (A + εB)| = O(ετ s1 + ε2τ s2). In terms of the local error, we have |S(τ )− exp[τ(A +
εB)]| = O(ετ s1+1 + ε2τ s2+1).

5.1 ABA schemes of generalised order (2n, 2)

McLachlan (1995) noted that as |ε| � τ we can have high-order methods by only killing the
terms in ετ k . Independently Chambers and Murison (2000), Laskar and Robutel (2001) dealt

123
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Table 2 Coefficients for the ABA(2n, 2) methods for n = 1, . . . , 4 (Laskar and Robutel 2001)

id order stg ai , bi

ABA22 (2, 2) 1 a1 = 1/2

b1 = 1

ABA42 (4, 2) 2 a1 = 1/2 − √
3/6

a2 = √
3/3

b1 = 1/2

ABA62 (6, 2) 3 a1 = 1/2 − √
15/10

a2 = √
15/10

b1 = 5/18

b2 = 4/9

ABA82 (8, 2) 4 a1 = 1/2 −
√

525 + 70
√

30/70

a2 =
(√

525 + 70
√

30 −
√

525 − 70
√

30
)
/70

a3 =
√

525 − 70
√

30/35

b1 = 1/4 − √
30/72

b2 = 1/4 + √
30/72

with this problem following similar ideas, (Laskar and Robutel 2001) providing an explicit
computation of the coefficients of the remainder for all order k. One of the main advantages
of only killing the terms in ετ k is that we are sure that all the coefficients ai , bi will be
positive. As a consequence the coefficients ai , bi will be small and the numerical scheme
will be stable.

In Table 2 we summarise the coefficients for the different ABA(2n, 2) schemes for n =
1, . . . , 4. For further details on how to find the ai , bi coefficients and the coefficients for
n ≥ 4 see (McLachlan 1995; Laskar and Robutel 2001). Since all the methods we consider
are symmetric, we only collect the necessary coefficients of each scheme. Thus, ABA(8, 2)
corresponds to the composition

ea1τ A eb1ετ B ea2τ A eb2ετ B ea3τ A eb2ετ B ea2τ A eb1ετ B ea1τ A.

We will follow this convention throughout the text.
In Fig. 1 we compare the performance of the ABA(2n, 2) for n = 1, 2, 3, 4 for the 4 inner

planets (left) and the 4 outer planets (right). The x-axis corresponds to the cost of the scheme
(τ/s) and the y-axis corresponds to the maximum energy variation for one integration at
constant step-size τ . Laskar and Robutel (2001) already saw that the optimal schemes for
this problem were those of orders (6, 2) and (8, 2) (i.e. SABA3 and SABA4 following their
notation).

The error on the Hamiltonian approximation of these schemes is O(ετ 2n +ε2τ 2). In Fig. 1
we can see how the error in energy decreases in τ with slope 2n for large steps-sizes and slope
2 for smaller steps-sizes. We also see how for small step-sizes there is no difference between
the cost of the ABA(6, 2) and ABA(8, 2) schemes. In order to improve their performance
we need to kill the term in ε2τ 2 rather than those of order ετ 2k for k > 4, which are the
limiting factor of these schemes.
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Fig. 1 Comparison between the ABA(2n, 2) methods for n = 1, 2, 3, 4 applied to the 4 inner planets (left)
and the fou outer planets (right). The x-axis represents the cost (τ/s) and the y-axis is the maximum energy
variation over one integration with constant step-size τ . Here s is the number of stages (decimal log scales)

5.2 ABA schemes of order (2n, 4)

In this section we will describe three different procedures to cancel the dominant term ε2τ 2

in order to get methods of generalized order (2n, 4), and discuss their performance for the
different test models described in Sect. 4.

5.2.1 The corrector term (SC)

Since in Jacobi coordinates A is quadratic in p and B depends only on q , then it follows
that the term [[A, B], B] depends only on q and thus exp(τ 3ε2[[A, B], B]) can be easily
computed. Laskar and Robutel (2001) noticed that it is possible to incorporate this term into
the previous compositions with a conveniently chosen constant so as to cancel the term of
order ε2τ 2 in the asymptotic expansion Eq. 15. We note that this corrector scheme is different
than the one introduced by Wisdom et al. (1996) where the corrector added at the beginning
and at the end of each step-size is a change of variables.

Thus, let Sn(τ ) be one of the symplectic ABA schemes of order (2n, 2) described in
Sect. 5.1. We can get rid of the term in ε2τ 2 by considering

SCn(τ ) = exp
(
−τ 3ε2 c

2
[[A, B], B]

)
Sn(τ ) exp

(
−τ 3ε2 c

2
[[A, B], B]

)
, (19)

with the appropriate choice of the constant c. In Table 3 we show the value for the coefficient
c for each of the 4 ABA(2n, 2) schemes described before. For further details see Laskar and
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Table 3 Coefficients c for the
corrector term applied to the
ABA(2n, 2) schemes in Table 2
(Laskar and Robutel 2001)

order c

1 1/12

2 (2 − √
3)/24

3 (54 − 13
√

15)/648

4 0.003396775048208601331532157783492144

Robutel (2001). Notice that SCn corresponds to integrating log(Sn(τ )) − τ 3ε2cL{{A,B},B}
using the leapfrog scheme.

So using Eq. 19 with any of theABA(2n, 2) scheme in Sect. 5.1 we obtain a new integrating
scheme of order (2n, 4) with no negative intermediate step.

5.2.2 The composition scheme (S2m)

Yoshida (1990) and Suzuki (1990) independently came up with the same idea to find a
symmetric scheme of order 2k + 2 from one of order 2k. They both noticed that if S(τ ) is a
scheme of order 2k, then:

S(x0τ)S(x1τ)S(x0τ), (20)

is a scheme of order 2k + 2 for an appropriate choice of the constant coefficients x0, x1. One
can check that x0, x1 must satisfy 2x0 + x1 = 1 and 2x2k+1

0 + x2k+1
1 = 0. Notice that the

second condition is used to cancel all the terms of order 2k, while the first one is only for
consistency.

Laskar and Robutel (2001) used this idea to turn any of the ABA schemes of order (2n, 2)
into one of order (2n, 4). If S(τ ) is a symmetric ABA scheme of order (2n, 2) then the
composition:

S2m(τ ) = Sm(y0τ)S(y1τ)Sm(y0τ), (21)

is a symmetric method of order (2n, 4) if y0, y1 satisfy 2my0 + y1 = 1 and 2my3
0 + y3

1 = 0
so, (y0 = 1/(2m − (2m)1/3), y1 = −(2m)1/3/(2m − (2m)1/3)).

We have done several tests to determine the optimal value of m, and they show that this
one is given by m = 2. These results are consistent with those of Suzuki (1990), McLachlan
(2002) who did a similar study in a more general framework. The main advantage of this
scheme is that we can use it for both heliocentric and Jacobi coordinates.

5.2.3 McLachlan extra stage scheme (ABA84)

McLachlan (1995) studied the possibility of adding an extra stage to the ABA(2n, 2) schemes
to get rid of the ε2τ 2 term. To add an extra stage results in having an extra pair of coefficients
ai , bi and an extra algebraic equation to satisfy. All the coefficients will no longer be posi-
tive (Suzuki 1991). In general, if the coefficients are not very large, these methods are stable.
The coefficients for the ABA method of generalised order (8, 4) provided by McLachlan
(1995) are collected in Table 4.
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Table 4 Coefficients for the ABA method of order (8, 4) found by McLachlan (1995)

id order stg ai , bi

ABA84 (8, 4) 5 a1 = 0.075346960269892888416527803683474464372652667

a2 = 0.51791685468825678230077397849631564432384744

a3 = −0.093263814958149670717301782179790108696500110
b1 = 0.19022593937367661924523076273845389746120362

b2 = 0.84652407044352625705508054464677583417711374

b3 = −1.07350001963440575260062261477045946327663472
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Fig. 2 Comparison between the different schemes to kill the the ε2τ2 terms in the ABA82 scheme. From left
to right the 4 inner planets, the 4 outer planets and the whole Solar System. The x-axis represents the cost
(τ/s) and the y-axis the maximum energy variation for one integration with constant step-size τ (decimal log
scales)

5.2.4 Results

In Fig. 2 we compare the performance of these three different approaches to build methods
of generalised order (8, 4) against the ABA(8, 2) scheme (also referred to as ABA82). In the
plots we show the cost (τ/s) versus the maximum energy variation for the three test models:
the 4 inner planets (left), the 4 outer planets (middle) and the 8 planets in the Solar System
(right).

As we can see, the three different schemes improve considerably the performance of
the ABA82 (red line). In all cases the corrector scheme SC (blue line) and the McLach-
lan ABA84 (purple line) show a similar quantitative behaviour. The difference between
them is the cost of the extra stage in ABA84, as we are assuming that the corrector is
completely free. We note that this is not entirely true if the number of bodies is large
(n ≥ 4). On the other hand, the composition methods, S2m (green line), improves the
performance with respect to the ABA82 (red line) but is much more expensive than the other
two schemes.
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5.3 ABA schemes with generalised order (s1, s2, . . .)

In the previous section we have seen that adding an extra stage to cancel the term of order
ε2τ 2 gives good results. We can extend this idea and add more stages to kill the error terms
accounting to the main limiting factor for each problem (Blanes et al. 2013). This translates
into adding more constraints on the coefficients. As long as the increase in the computational
cost is less than the gain in accuracy these methods will be competitive. In Fig. 2 we see that the
dominant error term for the ABA84 scheme varies between the different test models. Notice
that for the outer planetary system the scheme behaves as one of order 4, so the dominant
term is ε2τ 4. On the other hand, for the inner planetary system, the method behaves as one
of order 8, now the dominant term is ετ 8.

Hence, to improve the performance of the McLachlan’s ABA84 method we need to kill
different error terms depending on the problem. For the inner planets, a method of order
(10, 4) should perform better than one of order (8, 6). While for the outer planets a method
of order (8, 6) should give better results than one of order (10, 4).

In Blanes et al. (2013) we find details on how to solve the algebraic equations and find the
set of coefficients ai , bi that provide ABA schemes for a given arbitrary order (s1, s2, . . .).
We must mention that there is no unique combination of coefficients ai , bi for a given order.
From all the possible solutions we have selected those that give a better approximation and
whose coefficients ai , bi are small. In Table 5 we summarise the coefficients for three ABA
schemes: one of order (10, 4); one of order (8, 6, 4) and one of order (10, 6, 4).

5.3.1 Results

In Fig. 3 we compare the performance of the three schemes summarised in Table 5 against
the ABA82 and ABA84 for the three test models.

In the left-hand side of Fig. 3 we have the results for the 4 inner planets. We recall that the
dominant error term in the ABA84 scheme was ετ 8. Hence, a method of order 10 in ε should
perform better than one of order 8 in ε. Nevertheless, as we can see there is no significant gain
in the performance of these schemes with respect to ABA84. Apparently, for these methods
the gain in precision is proportional to the computational cost in this range of accuracy.

In the middle of Fig. 3 we have the results for the 4 outer planets. We recall that here
the dominant term in the ABA84 scheme was ε2τ 4, hence we expect the schemes of order 6
in ε2 to be better than the ABA84. As we can see the ABA864 and the ABA1064 schemes
give better results that the ABA84. In both cases the optimal cost is around 10−2 versus an
optimal cost of around 10−3 for the ABA84 scheme.

The main difference between the inner planets and the outer planets is the size of the
perturbation. We recall that in Jacobi coordinates, for the inner planets ε ≈ 4.54 · 10−6,
while for the outer planets ε ≈ 2.03 · 10−4 (see Table 1). The difference of about 2 orders
of magnitude should explain the difference in the performance of the different schemes,
as the relevance of the terms εiτ 2k in the error approximation will vary depending on the
size of ε.

Taking this into account, one can be surprised by the performance of these schemes
when we consider the whole Solar System (Fig. 3 right). Here the size of the perturbation
(ε ≈ 1.96 · 10−4) is of the same order of magnitude as the case of the outer planets. But as
we can see in Fig. 3 the schemes behave in the same way as the case of the inner planets,
where the terms of order ετ 8 dominate those of order ε2τ 4. We think this is due to Mercury:
its fast orbital period and large eccentricity is limiting the performance of the methods. This
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Table 5 Coefficients for ABA symmetric splitting methods of orders (10, 4), (8, 6, 4) and (10, 6, 4) (Blanes
et al. 2013)

id order stg ai , bi

ABA104 (10, 4) 7 a1 = 0.04706710064597250612947887637243678556564

a2 = 0.1847569354170881069247376193702560968574

a3 = 0.2827060056798362053243616565541452479160

a4 = −0.01453004174289681837857815229683813033908
b1 = 0.1188819173681970199453503950853885936957

b2 = 0.2410504605515015657441667865901651105675

b3 = −0.2732866667053238060543113981664559460630
b4 = 0.8267085775712504407295884329818044835997

ABA864 (8,6,4) 7 a1 = 0.0711334264982231177779387300061549964174

a2 = 0.241153427956640098736487795326289649618

a3 = 0.521411761772814789212136078067994229991

a4 = −0.333698616227678005726562603400438876027
b1 = 0.183083687472197221961703757166430291072

b2 = 0.310782859898574869507522291054262796375

b3 = −0.0265646185119588006972121379164987592663
b4 = 0.0653961422823734184559721793911134363710

ABA1064 (10, 6, 4) 8 a1 = 0.03809449742241219545697532230863756534060

a2 = 0.1452987161169137492940200726606637497442

a3 = 0.2076276957255412507162056113249882065158

a4 = 0.4359097036515261592231548624010651844006

a5 = −0.6538612258327867093807117373907094120024
b1 = 0.09585888083707521061077150377145884776921

b2 = 0.2044461531429987806805077839164344779763

b3 = 0.2170703479789911017143385924306336714532

b4 = −0.01737538195906509300561788011852699719871

phenomena was already noticed by Wisdom et al. (1996) and re-discussed by Viswanath
(2002). This is why Saha and Tremaine (1994) proposed to use independent time-steps for
each planet. They used the leapfrog scheme and adapted it to take fractions of the given
step-size for each planet, depending on their orbital period. It is not trivial to extend these
ideas using the higher order schemes described in this section, and a second order method is
not the appropriate option to achieve round-off accuracy.

6 Splitting symplectic integrators for Heliocentric coordinates

We recall that all the tests done in Sect. 5 have been done using Jacobi coordinates. All these
integrating schemes assume that the two parts of the Hamiltonian HA, HB are integrable.
This is true for Jacobi coordinates where:

HJb(q, p) = HK (q, p)+ HI (q), (22)
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Fig. 3 Comparison between the ABA splitting schemes of arbitrary order (s1, s2, s3) summarised in Table 5
against the ABA82 and ABA84. From left to right the 4 inner planets, the 4 outer planets and the whole Solar
System. The x-axis represents the cost (τ/s) and the y-axis the maximum energy variation for one integration
with constant step-size τ (decimal log scales)

here HK (q, p) is integrable (it is a sum of independent Kepler problems) as well as HI (q)
(it only depends on q). However, this is not true for heliocentric coordinates where:

HHe(q, p) = HK (q, p)+ HI (q, p), (23)

and HI (q, p) is not integrable, which can be a problem if we want to apply the splitting
schemes presented in Sect. 5.

An option to deal with the non-integrability of HI (q, p) is to use another numerical method
to integrate HI (q, p) and compute the exp(biτ B) up to machine accuracy. Unfortunately,
this can drastically increase the computational cost of the schemes.

We propose to use the fact that HI (q, p) = T1(p)+ U1(q) splits naturally into two parts,
one depending on positions, the other in velocities. These two parts are integrable on its own
and small with respect to HK (q, p). In a general framework, the Hamiltonian splits as:

H = HA + ε(HB + HC ),

where HA, HB and HC , can be integrated when we consider them separately. In the same
way as in Sect. 5, we could try to find appropriate coefficients ai , bi , ci , such that

S(τ ) =
s∏

i=1

exp(aiτ A) exp(εbiτ B) exp(εciτC),

approximates exp(τ L H ). As before, to simplify notation A ≡ {HA, ·}, B ≡ {HB , ·} and
C ≡ {HC , ·}. Then one has to deal with the Lie Algebra generated by A, B and C . The
number of order conditions as well as the complexity to solve them numerically to get the
coefficients ai , bi , ci grows extraordinarily with the order (Koseleff 1993a; Blanes et al.
2013). A simple alternative way to proceed is to use the splitting symplectic schemes in
Sect. 5:

S(τ ) =
s∏

i=1

exp(aiτ A) exp(εbiτ(B + C)). (24)
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Fig. 4 Comparison between the ABA82, ABA84 and S2m schemes discussed in Sect. 5.2 applied to helio-
centric coordinates. From left to right the 4 inner planets, the 4 outer planets and the whole Solar System.
The x-axis represents the cost (τ/s) and the y-axis the maximum energy variation for one integration with
constant step-size τ (decimal log scales)

and approximate exp(εbiτ(B + C)) with

exp(εbiτ(B + C)) ≈ exp

(

ε
bi

2
τC

)

exp(εbiτ B) exp

(

ε
bi

2
τC

)

. (25)

Here we take C as the Lie operator associated to T1(p) due to its lower computational cost.
In general HB and HC do not commute ({HB , HC } �= 0), so this approximation adds an

extra error contribution term, ε3τ 2, which will be negligible for small ε. In Fig. 4 we see the
result of taking the ABA82, the ABA84 and the S2m splitting schemes using Eq. 25 to deal
with heliocentric coordinates. We can see that in general the symplectic schemes have the
same behaviour as with Jacobi coordinates (Fig. 2).

We do see a difference in the case of the outer planets (Fig. 4 middle). Now the ABA84
scheme behaves as one of order 2 for small step-sizes. This is due to the extra error term
ε3τ 2. We recall that the main difference between the inner and the outer planets is the size
of the perturbation (ε) which is smaller in the first case. Here the terms of order ε3τ 2 are
negligible for the inner planets but not for the outer planets.

Unfortunately, when we consider high-order symplectic schemes like the ones presented
in Sect. 5.3 these extra error terms will become relevant, jeopardising the performance of
these schemes.

The first symplectic schemes using heliocentric coordinates (Koseleff 1993a; Touma and
Wisdom 1994) used the form of heliocentric Hamiltonian where the unperturbed problem is
the Keplerian motion of a planet around the Sun as in Laskar (1991), Laskar (1990b). Later
on Duncan et al. (1998) proposed to rewrite the Hamiltonian in heliocentric variables for
which the unperturbed problem is the Keplerian motion of a planet around a fixed Sun. For
this decomposition, the unperturbed Keplerian approximation is less accurate (see Duncan
et al. 1998), but HB and HC commute ({HB , HC } = 0), and thus exp(εbiτ(B + C)) =
exp(εbiτ B) exp(εbiτC). For further details see Appendix C.
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Table 6 Coefficients for ABAH specific symmetric splitting methods for heliocentric coordinates of orders
(8, 4), (8, 6, 4) and (10, 6, 4) (Blanes et al. 2013)

id order stg ai , bi

ABAH844 (8, 4) 6 a1 = 0.2741402689434018761640565440378637101205

a2 = −0.1075684384401642306251105297063236526845
a3 = −0.04801850259060169269119541715084750653701
a4 = 0.7628933441747280943044988056386148982021

b1 = 0.6408857951625127177322491164716010349386

b2 = −0.8585754489567828565881283246356000103664
b3 = 0.7176896537942701388558792081639989754277

ABAH864 (8, 6, 4) 8 a1 = 0.06810235651658372084723976682061164571212

a2 = 0.2511360387221033233072829580455350680082

a3 = −0.07507264957216562516006821767601620052338
a4 = −0.009544719701745007811488218957217113269121
a5 = 0.5307579480704471776340674235341732001443

b1 = 0.1684432593618954534310382697756917558148

b2 = 0.4243177173742677224300351657407231801453

b3 = −0.5858109694681756812309015355404036521923
b4 = 0.4930499927320125053698281000239887162321

ABAH1064 (10, 6, 4) 9 a1 = 0.04731908697653382270404371796320813250988

a2 = 0.2651105235748785159539480036185693201078

a3 = −0.009976522883811240843267468164812380613143
a4 = −0.05992919973494155126395247987729676004016
a5 = 0.2574761120673404534492282264603316880356

b1 = 0.1196884624585322035312864297489892143852

b2 = 0.3752955855379374250420128537687503199451

b3 = −0.4684593418325993783650820409805381740605
b4 = 0.3351397342755897010393098942949569049275

b5 = 0.2766711191210800975049457263356834696055

6.1 ABAH schemes of order (2n, 4) specific for heliocentric coordinates

We have just seen that for heliocentric coordinates we can adapt the splitting schemes
described is Sect. 5 using Eqs. 24 and 25. But with this an extra term ε3τ 2 appears in
the error approximation that will limit the performance for high-order schemes. One can
check that this error term is associated to the algebraic expression b3

1 + b3
2 + · · · + b3

n . We
can add an extra stage to the scheme so that it also satisfies:

b3
1 + b3

2 + · · · + b3
n = 0,

leading to symplectic schemes with the same generalised order as before for heliocentric
coordinates. Table 6 collects the coefficients for the ABAH scheme of order (8, 4) for
heliocentric coordinates. This scheme has the same effective order as the McLachlan ABA
scheme of order (8, 4) (Sect. 5.2.3) but it is specific for heliocentric coordinates. In Fig. 5
we compare the performance of this new scheme against the ABA84 scheme. As we can see,
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Fig. 5 Comparison between ABA84 and ABAH844. From left to right the 4 inner planets, the 4 outer planets
and the whole Solar System. The x-axis represents the cost (τ/s) and the y-axis the maximum energy variation
for one integration with constant step-size τ (decimal log scales)

for the outer planets the new ABAH844 scheme behaves better than the ABA84 for small
step-sizes.

6.2 ABAH specific methods with arbitrary order (s1, s2, . . .)

In the same way we can add the extra constraint b3
1 +· · ·+b3

n = 0 to the high-order schemes
in Sect. 5.3 to have high order splitting schemes specific for heliocentric coordinates. In
Table 6 we show the coefficients of two ABAH schemes of orders (8, 6, 4) and (10, 6, 4).
All these schemes have one more stage than the schemes presented in Table 5.

In Fig. 6 we compare the performance of the ABA82 with the other three schemes in
Table 6. The behaviour of the schemes depending on its order is similar to the one presented
in Jacobi coordinates. For the inner planets (Fig. 6 left) all ABAH schemes present a similar
optimal cost. For the outer planets (Fig. 6 middle) the ABAH schemes of order (8, 6, 4) and
(10, 6, 4) are much better than the other two schemes. We recall that here the size of the
perturbation is larger and killing the terms of order ε3τ 4 does make a difference. Finally, if
we consider the 8 planets in the Solar System (Fig. 6 right) here the ABAH schemes of order
(8, 6, 4) and (10, 6, 4) do improve the performance of the schemes of order (8, 4). We recall
that this was not the case in Jacobi coordinates (Fig. 3).

7 Jacobi versus Heliocentric coordinates

In Sects. 5 and 6 we have described different splitting schemes for both Jacobi and Helio-
centric sets of coordinates. In the case of heliocentric coordinates the expressions for the
Hamiltonian are less cumbersome and easier to handle (see Appendix B). But the size of
the perturbation is larger than in Jacobi coordinates and an extra stage to deal with the non-
integrability of HI must be added to have high-order schemes. Here we want to compare the
performance of the different schemes for both sets of coordinates.

We compare the performance of the ABA methods of order (8, 2), (8, 4) and (10, 6, 4) in
both sets of coordinates, with the three test models used throughout this report. We recall that
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Fig. 6 Comparison between ABAH schemes of order (8, 4, 4), (8, 6, 4) and (10, 6, 4) specific for heliocen-
tric coordinates and the ABA82. From left to right the 4 inner planets, the 4 outer planets and the whole Solar
System. The x-axis represents the cost (τ/n) and the y-axis the maximum energy variation for one integration
at constant step-size τ (decimal log scales)
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Fig. 7 Comparison between Jacobi (continuous lines) and heliocentric (discontinous lines) coordinates using
the schemes of orders (8, 2) (red), (8, 4) (blue) and (10, 6, 4) (purple). From left to right the 4 inner planets,
the 4 outer planets and the whole Solar System. The x-axis represents the cost (τ/s) of the method and the
y-axis the maximum energy variation for one integration with constant step-size τ (decimal log scales)

the (8, 4) and (10, 6, 4) schemes have an extra stage in heliocentric coordinates. In Fig. 7 we
summarise the performance of these schemes. From left to right we have the results for the
inner planets, the outer planets and the whole Solar System. We distinguish the order of the
schemes by the colour. The lines in red represent the schemes of order (8, 2), the blue lines
those of order (8, 4) and the purple lines those of order (10, 6, 4). We use continuous lines
to refer to Jacobi coordinates and discontinuous lines for heliocentric coordinates.

If we look at the results for the inner planets (Fig. 7 left), we can see there is not much
difference between taking Jacobi or heliocentric coordinates (continuous vs. discontinuous
lines). In both cases the size of the perturbation is small (Table 1) and there is not much
difference between taking a splitting scheme of order (8, 4) or (10, 6, 4). In both cases the

123



High precision symplectic integrators 161

terms in ε in the error expansion are the ones that matter, but there is not much difference
between taking order 8 or ten in ετ k . We should have to use arithmetics with higher precision
to see the difference (see Appendix D). Hence the ABA84 is the best choice for this case.

If we look at the results for the outer planets (Fig. 7 middle), again there is no significant
difference between Jacobi and heliocentric coordinates. But here the ABA schemes of order
(10, 6, 4) perform much better that the other schemes, having an optimal step-size one order
of magnitude larger than the ones for the schemes of order (8, 4).

If we look at the whole Solar System (Fig. 7 right), we see that there is a big difference
between taking Jacobi or heliocentric coordinates. Looking at the ABA82 scheme (red lines)
we see that the slopes are the same but that there is a difference of about one order of
magnitude in accuracy for a given step-sizes. If we look at the scheme of order (8, 4) (blue
lines), we see that in Jacobi coordinates the methods behave as one of order 8, while in
heliocentric coordinates this one behaves as one of order 4. This can be explained by the
difference in the size of the perturbation (see Table 1) in both set of coordinates. We also
see that there is a big difference between the optimal step-size for both sets of coordinates,
making Jacobi coordinates by far the best choice. Finally, if we compare the ABA schemes of
order (10, 6, 4) (purple lines) the difference between the two set of coordinates is drastically
reduced, although Jacobi coordinates still perform slightly better. However, the extra stages
to go from an (8, 4) scheme to a (10, 6, 4) one do not improve in Jacobi coordinates. This
is not the case of heliocentric coordinates, where the (10, 6, 4) gives the best results and the
difference between the two set of coordinates is not as relevant as before.

To sum up, we recommend to use either the schemes ABA84or ABA1064 in the case of
Jacobi coordinates, while for heliocentric coordinates one should use theABAH1064 scheme.
Although Jacobi coordinates present slightly better results for most of the test models, we
believe that using Jacobi or heliocentric coordinates is a matter of choice.

8 Conclusions

In this article we have reviewed different symplectic splitting schemes and tested their per-
formance for the case of the planetary motion, focussing on the Solar System motion. We
recall that in the case of the planetary motion, using an appropriate change of variables, the
Hamiltonian of the N-body problem can be rewritten as HK + HI . A sum of independent
Keplerian motions for each planet (HK ) and a small perturbation term given by the interaction
between the planets (HI ).

There are two set of canonical coordinates that allow us to write the Hamiltonian in this
way: Jacobi and heliocentric coordinates (Sect. 3). Although in Jacobi coordinates the size of
the perturbation is smaller and HI is integrable, heliocentric coordinates seem more natural
and the expressions are easier to handle (Appendix B). In this article we have compared the
performance of different symplectic splitting schemes in both sets of coordinates.

In Sect. 5 we described different splitting symplectic schemes for Jacobi coordinates. In
Sect. 6 we saw how to extend these schemes to use heliocentric coordinates. We note that
all the splitting schemes for Jacobi coordinates can also be used in Heliocentric coordinates,
but in order to have a comparable performance an extra stage to kill the terms in ε3τ 2 must
be added (see Sect. 6).

We have seen that in Jacobi coordinates, the ABA84 scheme introduced by McLachlan
(1995) and the ABA1064 scheme (Blanes et al. 2013) give the best results when we look at
the motion of the whole Solar System. The high eccentricity of Mercury and its fast orbital
period are the main limiting factors and taking higher order splitting schemes do not always
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provide significant improvements. But for different planetary configurations, as the 4 outer
planets, the ABA1064 scheme has a better performance than the ABA84 method.

When we consider heliocentric coordinates, the ABAH1064 method (Blanes et al. 2013)
gives the best results when we consider the whole Solar System. In this case, probably because
the size of the perturbation is larger, adding extra stages to have higher order schemes does
improve the results. The nominal solution La2010a of Laskar et al. (2011a) was computed
with the ABA82 scheme and a stepsize of 10−3 yr. Using the ABAH1064 scheme, the same
accuracy should be reached with nearly an order of magnitude improvement in the comput-
ing time (Fig. 6). The performances of the schemes in both sets of coordinates, Jacobi or
heliocentric are very similar for the scheme of order (10, 6, 4), with a slight advantage for
the Jacobi coordinates. Depending on the problem, one can thus use either system of coor-
dinates, but it is clear that using high order schemes as the ABA(H)864 and ABA(H)1064
(Blanes et al. 2013) can drastically improve the results. This should be even more the case for
highly perturbed systems as some extra solar planetary systems with close planets of large
masses and large eccentricities. It should be nevertheless noted that although these high order
integrators behave well until very large eccentricities (up to 0.99 in some of our simulations),
some specific integrators need to be used when collisional behaviors are considered (Duncan
et al. 1998; Chambers 1999).
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Appendix A: On the compensated summation

Using any of the symplectic integrating schemes described in this article, we require succes-
sive evaluations of exp(aiτ A) and exp(biτ B). Each of these evaluations slightly modifies
the position and velocity of each planet. For τ small, we will have a loss in accuracy due to
round-off errors. The Compensated Summation is a simple trick that is commonly used to
reduce the round-off error. In a general framework, when we consider a numerical method
for solving an ODE, we require a recursive evaluation of the form:

yn+1 = yn + δn, (26)

where yn is the approximated solution and δn is the increment to be done. Usually δn will be
smaller in magnitude than yn . In this situation, the rounding errors caused by the computation
of δn are in general smaller that those to evaluate Eq. 26. The algorithm that can be used in
order to reduce this round-off error is called the “Compensated Summation” (Kahan 1965).

Compensated summation algorithm: Let y0 and {δn}n≥0 be given and put e = 0.
Compute y1, y2, . . . from Eq. 26 as follows:

f or n = 0, 1, 2, . . . do
a = yn

e = e + δn

yn+1 = a + e
e = e + (a − yn+1)

enddo

This algorithm accumulates the rounding errors in e and feeds them back into the sum-
mation when possible. At each time-step of the integration, when we evaluate exp(aiτ A) or
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Fig. 8 Comparison between the ABA schemes of order (2n, 2) for n = 1, 2, 3, 4 applied to the Sun-Jupiter-
Saturn three body problem. With (CS) and without (noCS) the compensated summation. The x-axis represent
the cost (τ/n) and the y-axis the maximum energy variation for one integration with constant step-size τ . Left
using a double precision arithmetics; Right using an extended precision arithmetics (decimal log scales)

exp(biτ B), the increment in position and velocity is done using the compensated summation.
In Fig. 8 we show the results for the ABA(2n, 2) schemes for n = 1, 2, 3, 4 using double
(left) and extended precision (right). In both cases we gain almost one order of magnitude in
precision when we take into account the compensated summation.

Appendix B: Integration schemes (some help on the practical coding)

In this paper we have reviewed many splitting symplectic integrating schemes, all of them
of the form:

S(τ ) = exp(a1τ A) exp(b1τ B) . . . exp(b1τ B) exp(a1τ A), (27)

where exp(τ A) and exp(τ B) can be computed explicitly. They correspond to the integrals of
the two different parts of the original Hamiltonian. In this section we show how to compute
explicitly exp(τ A) and exp(τ B) for the particular case of the N-body problem in Jacobi and
heliocentric coordinates. We note that from now on: ũ stands for the momenta associated to
u and u′ stands for du/dt .

B.1 Keplerian motion (HK )

We recall that in Jacobi coordinates,

HK =
n∑

i=1

(
1

2

ηi

ηi−1

||ṽi||2
mi

− G
miηi−1

||vi||
)

, (28)

whereas in heliocentric coordinates,

HK =
n∑

i=1

(
1

2
||r̃i||2

[
m0 + mi

m0mi

]

− G
m0mi

||ri||
)

. (29)

In both cases HK is a sum of independent Keplerian motions. In Jacobi coordinates each
planet follows an elliptical orbit around the centre on mass of the Sun and the planets that
are closer to the Sun, the mass parameter of the system is μJ = Gηi . While in heliocentric
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coordinates each planet follows an elliptical orbit around the planet-Sun centre of mass, and
the mass parameter of the system is μH = G(m0 + mi ).

It is well known that Kepler problem is integrable, but the solution from time t = t0 to
t = t0 + τ is expressed in a simple form if we consider action-angle variables. To compute
exp(τ L HK ) we need to be able to compute (r(t0 + τ), v(t0 + τ)) from (r(t0), v(t0)).

An option is to change to elliptical coordinates, advance the mean anomaly and then return
to Cartesian coordinates. But this can accumulate a lot of numerical errors as well as it is
very expensive in terms of computational cost. Instead we use a similar idea as the Gauss f
and g functions (Danby 1992), where we use an expression for the increment in position and
velocities for a given step-size τ , without having to perform any change of coordinates. Let
us give some details on how to derive these expressions.

In elliptical coordinates the motion of the two body problem is given by (a, e, i,Ω,ω, E),
where all of the elements remain fixed except for E that varies following Kepler equation
(n(t − tp) = M = E − e sin E). Using a reference frame where the orbital plane is given by
Z = 0, the X -axis is the direction of the perihelion and the Y -axis completes an orthogonal
reference system on the orbital plane, the position (X, Y, 0) and velocity (X ′, Y ′, 0) are
given by:

X = a(cos E − e), Y = a
√

1 − e2 sin E,

X ′ = −na2

r
sin E, Y ′ = na2

r

√
1 − e2 cos E,

(30)

where r = a(1−e cos E) and n = μ1/2a−3/2. The position and velocities on a fixed reference
frame are given by:

⎛

⎝
x x ′
y y′
z z′

⎞

⎠ = R3(Ω)× R1(i)× R3(ω)×
⎛

⎝
X X ′
Y Y ′
0 0

⎞

⎠ , (31)

where

R1(θ) =
⎛

⎝
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞

⎠ , and R3(θ) =
⎛

⎝
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞

⎠

Notice that

R3(Ω)× R1(i)× R3(ω) = R × R3(),

where  = Ω + ω and R = R3(Ω) × R1(i) × R3(−Ω). Given that R1(i) =
R1(i/2)R1(i/2) we have that:

R =
⎛

⎝
1 − 2p2 2pq 2pχ

2pq 1 − 2q2 −2qχ
−2pχ 2qχ 1 − 2p2 − 2q2

⎞

⎠ , (32)

123



High precision symplectic integrators 165

where p = sin i/2 sinΩ,q = sin i/2 sinΩ, andχ = √
1 − p2 − q2 = cos i/2. From Eq. 31

we have,

[ r(t0), v(t0) ] = R × R3()×
⎡

⎣
X0 X ′

0
Y0 Y ′

0
0 0

⎤

⎦ (33)

[ r(t0 + δt), v(t0 + δt) ] = R × R3()×
⎡

⎣
X1 X ′

1
Y1 Y ′

1
0 0

⎤

⎦ . (34)

Hence,

[ r(t0 + δt), v(t0 + δt) ] = [ r(t0), v(t0) ]
[

X0 X ′
0

Y0 Y ′
0

]−1 [
X1 X ′

1
Y1 Y ′

1

]

(35)

= [ r(t0), v(t0) ]
[

a11 a12

a21 a22

]

. (36)

One can check that,

a11 = 1 + (cos(E1 − E0)− 1)
a

r0
,

a21 = a3/2

μ1/2 sin(E1 − E0)− e sin E1 + e sin E0,

a12 = −
√

a

r0r1
sin(E1 − E0),

a22 = 1 + (cos(E1 − E0)− 1)
a

r1
, (37)

where ri = a(1−e cos Ei ) for i = 0, 1. We use Kepler’s equation to compute δE = E1 − E0

from δt = t1 − t0. Taking Mi = n(ti − tp) for i = 0, 1, we have that δE is the solution of

x − e cos E0 sin x − e sin E0 cos x + e sin E0 − nδt = 0. (38)

Calling C = cos δE, S = sin δE and ce = e cos E0, se = sin E0 we have that r1 =
a(1 − ce · C + se · S). Now we can rewrite Eq. 37 as:

a11 = 1 + (C − 1)
a

r0
,

a21 = δt + (S − δE)
a3/2

μ1/2 ,

a12 = − S

r0
√

a(1 − ce · C + se · S)
,

a22 = 1 + C − 1

1 − ce · C + se · S
. (39)

To summarise, given r = r(t0), v = v(t0) and defining r0 = ||r|| and v0 = ||v||, we find

a = r0/(2 − r0v
2
0), ce = e cos E0 = r0v

2
0 − 1, se = e sin E0 = 〈r, v〉/√μa.

Then we take δt and we use Eq. 38 to find δE . Finally we use Eqs. 35 and 39 to find
r(t0 + δt), v(t0 + δt).
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B.2 Jacobi coordinates

We recall that in this set of coordinates the perturbation part is given by:

HI = U1 = G

⎡

⎣
n∑

i=1

mi

(
ηi−1

||vi|| − m0

||ri||
)

−
∑

0<i< j≤n

(
mi m j

||ri − rj||
)

⎤

⎦ . (40)

B.2.1 Computing exp(L HI )

U1 depends only on the position, hence the equations of motion are given by,

d

dt
vk = ∂U1

∂ ṽk
,

d

dt
ṽk = −∂U1

∂ vk
.

Using ṽi = ηi−1mi

ηi
v̇i we have

vk(τ ) = vk(τ0), v̇k(τ ) = v̇k(τ0)− τ
ηi

ηi−1mi

∂U1

∂vk
.

As the expressions for ∂U1/∂vk can be a little cumbersome, we compute them separately.
When we derive HI with respect to vk we must derive 3 main expressions: 1/||vi||, 1/||ri||
and 1/||ri − rj|| for i < j . We first give the derivatives of these factors with respect to vk
and then we will deduce ∂HI /∂vk for k = 1, . . . , n.

∂

∂vk

(
1

||vi||
)

= − vi

||vi||3 · δi,k, where δi,k =
{

0 if i �= k,
1 if i = k.

∂

∂vk

(
1

||ri||
)

= − ri

||ri||3 · ξi,k, where ξi,k =

⎧
⎪⎨

⎪⎩

0 if i < k,
1 if i = k,

mk

ηk
if i > k.

∂

∂vk

(
1

||ri−rj||
)

=− ri−rj

||ri−rj||3 · ψi, j,k, where ψi, j,k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ηk−1

ηk
if k = i < j,

−mk

ηk
if i < k < j,

−1 if i < j = k,
0 else (k< i< j, i< j<k).

To compute ∂U1/∂vk for k = 1, . . . , n, we consider separately the cases k = 1 and k > 1:

∂U1

∂v1
= G

m0m1

η1

⎡

⎣
n∑

i=2

mi
ri

||ri||3
+

n∑

i=2

mi
r1 − ri

||r1 − ri||3

⎤

⎦ .

∂U1

∂vk
= Gmk

⎡

⎣−ηk−1
vk

||vk||3 + m0
rk

||rk||3 + m0

ηk

n∑

i=k+1

mi
ri

||ri||3

+ ηk−1

ηk

n∑

j=k+1

m j
rk−rj

||rk−rj||3
−

k−1∑

i=1

mi
ri−rk

||ri−rk||3 − 1

ηk

k−1∑

i=1

n∑

j=k+1

mi m j
ri − rj

||ri − rj||3

⎤

⎦ .
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B.2.2 Computing the corrector: exp(L{{A,B},B})

In Sect. 5.2.1 we described a splitting symplectic schemed where a corrector term was added
at the beginning and at the end of each step-size. The corrector term is given by,

exp
(
−τ 3ε2 c

2
LC

)
,

with LC = L{{A,B},B} and c a constant coefficient that depends on the order of the ABA
scheme.

In Jacobi coordinates A is quadratic in p and B only depends on q so {{A, B}, B} only
depends on q and {{A, B}, B} is integrable. We recall that A = HK ep = T0 + U0 and
B = Hpert = U1. Hence,

{{T0 + U0,U1},U1} = {{T0,U1},U1}.

Given that T0 =
∑n

i=1

ηi

ηi−1mi

||ṽi||2
2

, we have,

{T0,U1} =
n∑

i=1

ηi

ηi−1mi
ṽi
∂U1

∂vi
,

{{T0,U1},U1} =
n∑

i=1

ηi

ηi−1mi

(
∂U1

∂vi

)2

.

Then the equations of motion for LC are given by:

vk(τ ) = vk(τ0),

ṽk(τ ) = ṽk(t0)+ τ

n∑

i=1

2γi
∂U1

∂vi

∂2U1

∂vi∂vk
,

where γk = ηk
ηk−1mk

. As before, using ṽi = ηi−1mi

ηi
v̇i we have

v̇k(τ ) = v̇k(t0)+ τγk

n∑

i=1

2

(

γi
∂U1

∂vi

)
∂2U1

∂vi∂vk
.

Again the expressions for
∂2U1

∂vi∂vk
are a little cumbersome and we first show how to derive

the different parts in
∂U1

∂vk
: vi/||vi||3, ri/||ri||3 and ri − rj/||ri − rj||3.

∂

∂vk

(
vi

||vi||3
)

=
( 〈h,k〉

||vi||3 − 3
〈vi,h〉〈vi,k〉

||vi||5
)

· δi,k,

∂

∂vk

(
ri

||ri||3
)

=
( 〈h,k〉

||ri||3 − 3
〈ri,h〉〈ri,k〉

||ri||5
)

· ξi,k,

∂

∂vk

(
ri − rj

||ri − rj||3
)

=
( 〈h,k〉

||ri − rj||3 −3
〈ri − rj,h〉〈ri − rj,k〉

||ri − rj||5
)

· ψi, j,k .
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From now on we call Acc(i) = γi
∂U1

∂vi
, and

Λs = Acc(s)
( 〈h,k〉

||vi||3 − 3
〈vi,h〉〈vi,k〉

||vi||5
)

,

Θi,s = Acc(s)
( 〈h,k〉

||ri||3 − 3
〈ri,h〉〈ri,k〉

||ri||5
)

,

Ψi, j,s = Acc(s)
( 〈h,k〉

||ri − rj||3 − 3
〈ri − rj,h〉〈ri − rj,k〉

||ri − rj||5
)

.

We can now give the expressions for
∂2U1

∂vi∂vk
∀ j, k

∂2U1

∂v1∂v1
= G

m0m1

η1

⎡

⎣
n∑

j=2

m j

(

Θ j,1
m1

η1
+ Ψ1, j,1

m0

η1

)
⎤

⎦ .

∂2U1

∂v1∂vk
= G

m0m1mk

η1

⎡

⎣Θk,s − Ψ1,k,s + 1

ηk

n∑

j=k+1

m j (Θ j,s − Ψ1, j,s)

⎤

⎦ .

∂2U1

∂vk∂vk
= Gmk

[

−ηk−1Λk + m0Θk,k + m0mk

η2
k

n∑

i=k+1

miΘi,k + η2
k−1

η2
k

n∑

i=k+1

miΨk,i,k

+
k−1∑

i=1

miΨi,k,k + mk

η2
k

k−1∑

i=1

n∑

j=i+1

mi m jΨi, j,k

⎤

⎦ .

∂2U1

∂vk∂vl
= G

mkml

ηk

[

m0Θl,s − ηk−1Ψk,l,s + 1

ηl

n∑

i=l+1

mi (m0Θi,s − ηk−1Ψk,i,s)

+
k−1∑

i=1

miΨi,l,s + 1

ηl

k−1∑

i=1

n∑

j=l+1

mi m jΨi, j,k

⎤

⎦ .

B.3 Heliocentric coordinates

We recall that in this set of coordinates the perturbation part is given by:

HI = T1 + U1 =
∑

0<i< j≤n

r̃i · r̃j

m0
− G

∑

0<i< j≤n

mi m j

Δi j
, (41)

B.3.1 Computing exp(τ LT1)

Notice that T1 depends only on the momenta (r̃). Hence, the equations of motion are
given by,

d

dt
rk = ∂T1

∂ r̃k
=

∑

j=1, j �=k

r̃j

m0
=

∑

j=1, j �=k

m j ṙj

m0
,

d

dt
r̃k = ∂T1

∂ rk
= 0.
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Finally,

rk(τ ) = rk(τ0)+ τ
∑

j=1, j �=k

m j ṙj

m0
, ṙk(τ ) = ṙk(τ0).

B.3.2 Computing exp(τ LU1)

Notice that U1 depends only on the positions (r). Hence, the equations of motion are given
by,

d

dt
r̃k = ∂U1

∂ rk
= 0,

d

dt
r̃k = −∂U1

∂ rk
= −G

⎛

⎝
k−1∑

j=1

mkm j

Δ3
k j

(rk − rj)−
n∑

j=k+1

mkm j

Δ3
jk

(rj − rk)

⎞

⎠ .

Given that r̃k = mk ṙk, we have:

rk(τ ) = rk(τ0), ṙk(τ ) = ṙk(τ0)− τ G

⎛

⎝
k−1∑

j=1

m j

Δ3
k j

(rk − rj)+
n∑

j=k+1

m j

Δ3
k j

(rk − rj)

⎞

⎠ .

Appendix C: Heliocentric coordinates (alternatives for the set of equations)

The canonical heliocentric (CH) coordinates used in Sect. 6 are canonical and the position of
each body is taken with respect to the position of the Sun. The position and their associated
momenta are given by:

r0 = u0
ri = ui − u0

}

,
r̃0 = ũ0 + · · · + ũn
r̃i = ũi

}

.

The main difference between Jacobi and heliocentric coordinates is that in the second set of
coordinates the kinetic energy is not diagonal in the momenta. Instead we have:

T = 1

2

n∑

i=0

||ũi||2
mi

= 1

2

n∑

i=1

||r̃i||2
mi

+ 1

2

|| ∑n
i=1 r̃i||2
m0

, (42)

which can be rewritten as:

T = 1

2

n∑

i=0

||ũi||2
mi

= 1

2

n∑

i=1

||r̃i||2
[

1

m0
+ 1

mi

]

+
∑

0<i< j

r̃i · r̃j

m0
. (43)

The extra term due to the momenta of the Sun is added to the perturbation part and
makes it depend on both position and velocities. In Sect. 3 we used Eq. 43 to derive the
Hamiltonian expression, as in Laskar (1990b, 1991), Koseleff (1993a). Duncan et al. (1998)
used Eq. 42 instead, and a Keplerian approximation in which the planets orbits around a
fixed Sun (Eq. 48). Following Laskar (1991) we will call the first set of equations CH, and
following Duncan et al. (1998) we will call the second set of equations democratic canonical
heliocentric (DCH). Here we discuss the main differences between the two sets of equations
and compare the performance of the integrators presented in this paper for both expressions.
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C.1 Two different expressions for Heliocentric coordinates

As we know in heliocentric coordinates the Hamiltonian for an n-planetary system takes the
form:

H = HK + T1 + U1,

a sum of Keplerian parts, a quadratic term in the momenta and the gravitational interaction
between the other planets. Using Eq. 43 we have, for CH decomposition

HK =
n∑

i=1

(
1

2
||r̃i||2

[
m0 + mi

m0mi

]

− G
m0mi

||ri||
)

, (44)

T1 =
∑

0<i< j≤n

r̃i · r̃j

m0
, (45)

U1 = −G
∑

0<i< j≤n

mi m j

Δi j
. (46)

The main advantage of this way to split the equations is that Kepler’s third law is satisfied
for the individual planets: n2a3 = G(m0 + mi ). But HI = T1 + U1 is not integrable and
{T1,U1} �= 0.

Using Eq. 42 we have the DCH splitting introduced by Duncan et al. (1998), and used
later on by Chambers (1999) and Wisdom (2006)

H∗
K =

n∑

i=1

(
1

2

||r̃i||2
mi

− G
m0mi

||ri||
)

, (47)

T ∗
1 = 1

2

|| ∑n
i=1 r̃i||2
m0

, (48)

U∗
1 = −G

∑

0<i< j≤n

mi m j

Δi j
. (49)

With this way to split the equations the mass parameter for the Keplerian orbits is μ = Gm0

for all of the planets. On the other hand, T ∗
1 and U∗

1 (Eqs. 48–49) commute, i.e. {T ∗
1 ,U

∗
1 } =

0 and this is a advantage when we build high order splitting schemes. For simplicity let
us consider HB = T1 and HC = U1 for both expressions. We recall that in heliocentric
coordinates we need to integrate exp(τ (B +C)). Using DCH splitting (Eqs. 48–49) we have:

exp(τ (B + C)) = exp(τ B) exp(τC), (50)

which can be computed exactly and does not introduce any extra error terms to the splitting
schemes discussed in Sect. 5. Instead, using CH variables (Eqs. 45–46) we used

exp(τ (B + C)) ≈ exp
(τ

2
C

)
exp(τ B) exp

(τ

2
C

)
, (51)

and introduced error terms of order ε3τ 2. To deal with this in Sect. 6 derived splitting schemes
where an extra stage was added to get rid of these extra error terms.
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Fig. 9 Comparison between the two expressions for heliocentric coordinates: the classical CH expressions
(Eqs. 44–46) continuous lines and the DCH expressions (Eqs. 47–49) discontinuous lines. For the schemes
ABA82 (red), ABA84 (green) and ABA1064 (blue). From left to right the 4 inner planets, the 4 outer planets
and the whole Solar System. The x-axis represents the cost (τ/s) of the method and the y-axis the maximum
energy variation for one integration with constant step-size τ (decimal log scales)

C.2 Comparisons between the expressions

We recall that when we use DCH variables (Eqs. 47–49) we use the splitting schemes dis-
cussed in Sect. 5 with

S(τ ) =
n∏

i=1

exp(aiτ L HK∗ ) exp(biτ LT ∗
1
) exp(biτ LU∗

1
). (52)

While when we use the classical CH variables (Eqs. 44–46) we use the splitting schemes
discussed in Sect. 6 with

S(τ ) =
n∏

i=1

exp(aiτ L HK ep ) exp
(

bi
τ

2
LT1

)
exp(biτ LU1) exp

(
bi
τ

2
LT1

)
. (53)

We compare the ABA schemes of orders (8, 2), (8, 4) and (10, 6, 4) for both splitting
expressions. We recall that the schemes of order (8, 4) and (10, 6, 4) that use CH variables
(Eqs. 44–46) have one more stage than the schemes used with DCH variables (Eqs. 47–49).

Figure 9 summarise the performance of the different integrating schemes presented in
Sects. 5 and 6. From left to right we have the results for the inner planets, the outer planets
and the whole Solar System. The red lines show the performance of the ABA82 scheme, the
green lines are for the ABA84 schemes and the blue lines are for the ABA1064 schemes.
We use continuous lines when we consider CH variables and discontinuous lines for DCH
variables.

As we can see, there is no significant difference between using one splitting or the other. In
some cases one is better that the other. The main advantage that the splitting DCH introduced
by Duncan et al. (1998) is that we do not require an extra stage for a high-order scheme.
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Fig. 10 Comparison using Jacobi coordinates between the ABA82, ABA84, ABA104, ABA864 and
ABA1064 schemes using quadruple precision arithmetics. From left to right the 4 inner planets, the 4 outer
planets and the whole Solar System. The x-axis represents the cost (τ/s) and the y-axis the maximum energy
variation for one integration with constant step-size τ (decimal log scales)
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Fig. 11 Comparison using heliocentric coordinates between the ABAH82, ABAH84, ABAH864 and
ABAH1064 schemes using quadruple precision arithmetics. From left to right the 4 inner planets, the 4
outer planets and the whole Solar System. The x-axis represents the cost (τ/s) and the y-axis the maximum
energy variation for one integration with constant step-size τ (decimal log scales)

Appendix D: Comparison in quadruple precision

As we have discussed throughout the article, in many cases we have seen that despite taking
higher order methods no significant improvement on the performance of the schemes was
observed. This is the case of the 4 inner planets in the Solar System, where the size of the
perturbation is so small that the extra stages to increase the order of the schemes are useless.
Here the round-off error dominates the terms in ε2 and ε4. Similar results are also observed
when we consider the whole Solar System. In order to see an improvement we need to use
higher precision arithmetics. Here we have repeated the test from Sects. 5 and 6 for the
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different integrating schemes using quadruple precision arithmetics. We want to illustrate
that the different schemes of orders (8, 6, 4) and (10, 6, 4) perform better that those of order
(8, 4).

In Figs. 10 and 11 we show the results for the same test models used throughout
the article for Jacobi and heliocentric coordinates, respectively using quadruple precision
arithmetics. For Jacobi coordinates (Fig. 10) we compare the ABA82, ABA84, ABA104,
ABA864 and ABA1064 schemes. For heliocentric coordinates (Fig. 11) we compare the
ABAH82, ABAH84, ABAH864 and ABAH1064. As we can see in Fig. 10 for Jacobi coor-
dinates, the ABA864 and ABA1064 (Blanes et al. 2013) do improve the performance of
the ABA84 (McLachlan 1995). Notice also that for the 4 inner planets (Fig. 10 left) and the
whole Solar System (Fig. 10 right) the improvement is achieved for small step-sizes, where
the energy variation is below the machines epsilon for extended arithmetics precision. In
Fig. 11 similar results are observed for heliocentric coordinates.

From these experiments we see how the ABA splitting methods of orders (8, 6, 4) and
(10, 6, 4) for both sets of coordinates improve the performance of the McLachlan (1995)
ABA84 and the Laskar and Robutel (2001) ABA82.
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