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Abstract An algorithm is presented for generating successive approximations
to trigonometric functions of sums of non-commuting matrices. The resulting
expressions involve nested commutators of the respective matrices. The proce-
dure is shown to converge in the convergent domain of the Zassenhaus formula
and can be useful in the perturbative treatment of quantum mechanical prob-
lems, where exponentials of sums of non-commuting skew-Hermitian matrices
frequently appear.
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1 Introduction

Trigonometric matrix functions appear naturally when solving systems of sec-
ond order differential equations

Py o / !
Tz Ay =0 y0) =y, ¥ (0)=up (1)

whose solution is expressed by
y(t) = cos(tA)yo + A~ sin(tA)y). (2)

for all n xn matrices A [8]. When A is singular, (2) is interpreted by expanding
the matrix cosine and sine functions as power series of A:

A% At A4S
) A3 A5 AT
Sln(A):I—a"‘rﬁ—?‘f‘“' (3)

Equation (1) arises in finite element semidiscretizations of the wave equation,
whereas similar equations with a non-vanishing right-hand side of the form
g(t,y(t),y'(t)) appear in highly oscillatory problems, control theory, etc.

In this case one has also the matrix analogue of Euler’s formula,

e = cos(A) + isin(A),

so that
iA | —iA IA —iA
cos(A) = % sin(d) = = —¢ © (4)
and

cos?(A) +sin?(A) = I.

Different algorithms exist in the literature for the practical computation of the
matrix cosine and sine (see e.g. [1,8] and references therein). Several of them
make use of the double angle formula,

cos(2X) = 2cos?(X) — I, (5)

to construct an approximation Y to cos(A) by first considering a matrix X =
275 A with small norm and then approximating cos(X) by a function r(X) (a
truncated Taylor series, a Padé approximant, etc.). Y is then determined by
applying formula (5) s times.

Identity (5) is a special case of the addition formulae

cos(A + B) = cos(A) cos(B) — sin(A) sin(B)
sin(A + B) = sin(A4) cos(B) + cos(A) sin(B) (6)
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According to Higham, these identities hold if and only if AB = BA [8, p. 287].
That there are exceptions to this statement can be illustrated by the following
pair of matrices [6]:

A:”(—lo/a %) B:“<(10+04\/6)/a (10+04\/6)a)'

Although AB # BA for all a # 0, a straightforward calculation shows that, in-
deed, equations (6) are still valid here. For general matrices A and B, however,
one cannot expect them to hold unless their commutator [A, Bl = AB — BA
vanishes. This property is of course related through eq. (4) with the celebrated
Baker-Campbell-Hausdorff (BCH) formula [3]. Roughly speaking, e”e? =
eAtB+C where the additional term C' is due to the non-commutativity of A
and B. More in detail, the BCH theorem establishes that e e = ¢Z, with

Z =log(e?eP) = A+ B+ Y Zn(A,B)
m=2

and Z,,(A, B) is a linear combination (with rational coefficients) of nested
commutators involving m operators A and B. The first terms read explicitly

m=1: Z,=A+B
1
m=2: Z2:§[A,B]

m=3: Zy=o[A[A B] - [B[A B]

m=4: Zy=-_.[B,[A A B]]

m=5: Zs= _%O[A’ [A,[A,[A, B]]]] - ﬁlo[A, [B,[A, [A, B]]]
55 A [B, (B[4, Bl + 5B, [4,[4,4, B]]
+EIO[B, [B,[A,[A, B]]]] + %[B, (B, B, [A, B]]]].

An efficient algorithm for generating explicit expressions of Z,,(A, B) up to
an arbitrary m in terms of independent commutators is presented in [4]. At
this point it is natural to raise the following question: since formulae (6) do
not hold in general for non-commutative matrices, is it still possible to express
cos(A + B) in terms of the cosine and sine of A and B for general matrices
when [A, B] # 07 And if the answer is in the affirmative, can this be done in
a systematic (and hopefully efficient) way?

It is the purpose of this note to develop an algorithm that generalizes
identities (6) to non-commuting operators, thus providing successive approx-
imations to cos(A 4+ B) and sin(A + B) involving n-nested commutators of
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A and B for n = 1,2,.... As an illustration, if A and B are such that
[A,[A, B]] = [B,[A4, B]] =0, then the following exact result holds:

cos(A + B) = (cos(A) cos(B) — sin(A) sin(B)) o245l

sin(A + B) = (sin(A) cos(B) + cos(A) sin(B)) ez 4B, (7)
The algorithm we propose here constitutes in fact a direct application of the

dual of the BCH theorem: the so-called Zassenhaus formula, with multiple
applications in quantum mechanical systems and numerical analysis [5]. The

problem consists essentially in finding matrices (operators) Ci,Ca,... such
that e+ B = e4eB eC1e2 ... with C; depending only on nested commutators
of A and B.

Expressions like (7) can be useful in the perturbative treatment of quan-
tum problems where exponentials of sums of non-commuting skew-Hermitian
operators frequently appear [7].

2 Zassenhaus formula

To establish the Zassenhaus formula we consider two non commuting indeter-
minate variables X, Y and the free Lie algebra generated by them, £(X,Y).
This, roughly speaking, can be viewed as the set of linear combinations of all
commutators that can be constructed with X and Y. The elements of £L(X,Y)
are called Lie polynomials [11]. A free Lie algebra is a universal object, so that
results formulated in £(X,Y") are valid for any (finite- or infinite-dimensional)
Lie algebra [10].

Let us suppose then that X, Y € £(X,Y). The Zassenhaus formula estab-
lishes that the exponential XY can be uniquely decomposed as

oo
XY _ X Y H eCn(XY) = oX oV 0Ca(X)Y) (Ca(X)Y) | oCh(XY) ... (g)

n=2

where C,(X,Y) € L(X,Y) is a homogeneous Lie polynomial in X and Y of
degree k [9,12-15]. The first terms read explicitly

Ch(X,Y) = —%[x: Y]

Co(X,Y) = 5[V, [X, Y]] + g, [X, V] o)
CalX, ) = =6, X, [, Y]] = 519, 11X Y]] = g, DX V)

A recursive algorithm has been proposed in [5] for obtaining the terms C,
up to a prescribed value of n directly in terms of the minimum number of
independent commutators involving n operators X and Y. The procedure, in
addition, can be easily implemented in a symbolic algebra system without any
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special requirement, beyond the linearity property of the commutator. It reads
as follows:

Define f by
k

(D
Jik = : —ady, ‘ad’ Y,
' ; Uk =gy X
1
CQ =35 f1,17
2 (10)
Define fr,, n>2, k>n by
[k/n]—1 4
1) .
fn,k: = Z ( ]'> ad]Cnfnfl,krfnja
=0 '

1
Cn = ﬁf[(n—l)/Q],n—l n>3.
Here [k/n] denotes the integer part of k/n and the “ad” operator is defined by
adaB=[A,B], ad,B=[A,ad,'B], ad4B=B.

Whereas the factorization (8) is well defined in the free Lie algebra £(X,Y),
it has only a finite radius of convergence when X and Y are n x n real or
complex matrices. Specifically,

X oY o2 ...

lim e = (11)

n—oo
only in a certain subset of the plane (|| X|],||Y]) [2,12]. Specifically, it contains
the region | X ||+ (Y]] < 1.054, and extends to the points (|| X]||,0) and (0, ||Y]])
with arbitrarily large values of || X|| or ||Y|| [5]. In practical applications, how-
ever, the infinite product (8) is truncated at some n and then one takes the
approximation

X+Y Y o Ca(XY) (Ca(X)Y) | (CulX,Y) (12)

e ~eXe
When the Zassenhaus formula is applied to exp(+i(X +Y)), one gets

Sl (XHY) _ oiX eiye@(x,y) eég(x,y) e@(X,Y) o

e iXHY) _ o—iX e—iyeéz(x,y) eéa(x,y) e64(X,Y) o (13)
respectively, where
Cn=i"Cp,  Cp=(=)"Ch, n>2
and C,, is determined by algorithm (10). In more detail,
Cop = Cop = (—1)F Oy, (14)

Copgr = —Copy1 = (—1)%i Copy1, k>1.
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3 The algorithm

Expansions (13), together with (4), allow us to design a recursive procedure
and obtain expressions for cos(X +Y) and sin(X +Y) in terms of the sine
and cosine of X and Y. Since

)

1, , 1
cos(X+Y) = E(eZ(X+Y)+e—z(X+Y)), sin(X+Y) = 2@( el (X+Y) —z(X+Y))

all we have to do is to insert the factorizations (13) in these expressions and
collect terms up to the order n considered. Specifically, let us first introduce

7y =eel os(X )cos(Y) — sin(X) sin(Y)
+ i(cos( ) ( ) + sin(X) cos(Y))
zip=e —iX —zY Zik )
and, for n > 2,
Zn,1 = Zn-1,1 oCn Zn,2 = Zn—1,2 eCrn. (15)

Then it is clear that

1
vlN(X,Y) = 5(2n71 + zp2) R cos(X +Y)

1 (16)
g/r[zs] (X,Y) = —(2p1 — 2n2) =sin(X +7Y)

21

Thus, up to n = 2, one has the approximations

1
WQ[C] - 5(2’2,1 +202) = W1[C] e @ = Re(z1,1) e

1
%[S] = 2—1_(2211 — Z292) = 471[5] S Im(z1,1) e 2

which reproduce, with Cy given by (9), expressions (7) (with the replacement
of X, Y by A and B, respectively), whereas analogously

!I/%C] = !1/2[C] cos(Cs) + W2[S] sin(Cs), !P[S] —W[ sin(C3) + WQ[S] cos(C3).
The general algorithm can then be established as follows:

@[ = Re(z1.,1) = cos(X) cos(Y) — sin(X) sin(Y)
1[31 = Im(le) = cos(X) sin(Y) + sin(X) cos(Y)
For k =1,2,...
[ ] “72[}3] (71)k02k
%{gh — B con(Coper) - (-1 7y sin(Cari)
ol | = W) cos(Copin) + (—1)F W) sin(Copsr),
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and one has

lim ¥IN(X,Y) = cos(X +Y), lim ¥¥(X,Y) =sin(X +Y)

n—oo n— oo

in the convergence domain of the Zassenhaus formula (11), in particular when
(IX||+ Y] < 1.054.

The recursion (17) can be easily programmed with a symbolic algebra
package in conjunction with algorithm (10) to generate the terms C,, and thus
produce approximations to cos(X +Y') and sin(X +Y") up to the desired order
n. In particular, up to n = 4 we have

cos(X +Y) = ((cos(X) cos(Y) — sin(X) sin(Y)) e~ 20 cog(C5(X, Y))+
(cos(X)sin(Y) + sin(X) cos(Y)) e~ C2(0Y) gin(Cy(X, Y))) eCa(X.Y)

sin(X +Y) ((sm sin(Y) — cos(X) cos(Y)) e XY §in(Cs(X,Y))+

(

(COS( )sm Y) + Sln( )COS(Y)) 6702(X7Y) COS(Cg(X, Y))) eC'4(X,Y)

4 Examples

Next we collect two particular examples to illustrate the use of, and results
obtained by, algorithm (17) to approximate cos(X +Y') and sin(X +Y).

Ezample 1. Pauli matrices play an important role in many quantum mechan-
ical problems. They are defined by

() () () W

and form a basis of su(2), the Lie algebra of 2 x 2 skew-Hermitian traceless
matrices. They verify
00k = (5]kI -+ iEjlil, (19)

so that their commutators are given by
[0, 0k] = 2i€jp0, (20)
where €;1; denotes the Levi-Civita symbol. It can be shown that

exp(ia - o) = cos(a) [ + i@a o, (21)

where a = ||a|| = \/a? + a3 + a3 and & = (01, 02,03) [7].

Consider a parameter € > 0 and let us take X = 01 and Y = 3. Then,
direct application of (21) shows that

sin(eX)

cos(e(X + BY)) = cos(eA)], sin(e(X + gY)) = 3

(X+5Y) (22
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with A = 4/1+ $2. On the other hand, algorithm (17) applied to this case
renders

S (R CPVIE R COVEES

23
ol = f15(e, )X + gl (e, N Y >
with (rather involved) explicit expressions for the real functions f,[LC], 7[15],

gLC], gl,s]. Notice that a non-vanishing term multiplying ¢ oo appears in the

expression of J/?QC], contrary to the exact solution (22). It turns out, however,
that gLC] (e, \) goes to zero when n — oo. Moreover, if a series expansion
in powers of € of these functions is computed, then we reproduce the exact
expressions (22) up to the order considered. Thus, in particular, up to order

e® we get

[C] )\:1_12)\2 i4)\4_i6)\6 8)\8 1 (10
fs (5N 25 N Tt 720° N T ao320° * TOE)
g (e N) = 0(?)

718 (e,\)=¢— 153)\2 + L<€5/\4 - e\ +0()
8 6 120 5040
1 1 1
gés] (e,\)=p (5 - 653)\2 + 505%\4 - 504057)\6> + O(£%)

Example 2. For our second example we consider two 10 x 10 matrices A and B
whose elements are random numbers in the range (0, 1) and normalized so that
lAll2 = ||Bll2 = 1. We are therefore outside the convergence domain for the
Zassenhaus formula guaranteed by [5]. Then we compute numerically cos(A +
B) (with Mathematica) and wl (A, B) as given by algorithm (17) for several

values of n. Finally we determine the error log(|| cos(A + B) — s (A,B)|)
and represent this value as a function of n. In this way we obtain Figure 1.
We clearly observe how the error decays exponentially with n. In other words,
algorithm (17) provides a convergent expansion for cos(A + B) well beyond
the domain obtained in [5]. A similar conclusion is achieved if one instead

considers log(|| sin(A + B) — (A, B)|)).

5 Generalizations

Algorithm (17) can be applied of course to get other generalized trigonometric
identities involving sums and products of the cosine and sine of X +Y . For the
sake of illustration, we next collect the expansions of cos(X —Y) —cos(X +Y)
and sin(X —Y) + sin(X +Y) up to n = 4 obtained with our procedure.
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Fig. 1 Difference between cos(A + B) and the expansion !I/,[LC] (A, B) as a function of n for

two 10 X 10 random matrices A and B with ||A||2 = ||Bll2 = 1.

Specifically,
cos(X —Y)—cos(X+Y) =
cos(X) cos(Y) e~ @2 (XmY) cos(C3(X, —Y)) eFa(Xo=Y)
—cos(X) cos(Y) e~ C2(XY) cos(C3(X,Y)) eCa(X.Y)
— cos(X)sin(Y) e~ C2(X,-Y) sin(C3(X, -Y)) eCa(X,=Y)
— cos(X) sin(Y) e” 2V ) gin(Cy (X, Y)) eC2(XY)
+ sin(X) cos(Y) e~ 2"V gin(C5(X, —Y)) 4 (X7Y)
— sin(X) cos(Y) e %Y sin(C5 (X, Y)) e+ (5Y)
+ sin(X) sin(Y) e~ C2(X57Y) cos(C5( X, —Y)) eC4(XY)
+ sin(X) sin(Y) e 2(X5Y) cos(C5(X, V) €1 (5Y)
and

)
— sin(X) sin(Y) e~ 207V gin(Cy (X, —Y)) 41X —Y)
)sin(Y) e~ XY 5in(C3(X,Y)) eC4(XY)
Y) e—Cz(X,—Y) Sin(Cg(X, —Y)) eC4(X,—Y)
V) em @) gin(C3(X, Y)) et XY)
e~ 2(0Y) cog(Cs(X, —Y)) eC1 (X —Y)
e~ C2(XY) cos(C3(X,Y)) eCa(X.Y)
e~ 20 Y) 6og(Cs(X, —Y)) eC1 (X —Y)

e C2(XY) o5 (O3 (X, Y)) eCa (XY,
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Notice that if X and Y commute, then C,, = 0 for all n > 2 and the usual
expressions

cos(X —Y) —cos(X +Y) =2sin X sin?,

sin(X —Y) +sin(X +Y) =2sin X cosY

are recovered.

In the trigonometric expansions obtained with algorithm (17) all the suc-
cessive commutators appear to the right. This of course is due to the form
of the Zassenhaus formula (8). There exists, however, an alternative, “left-
oriented” expression of this formula, namely

XHY L OR(NY) L (Ga(XY) (C2(X)Y) oY o X (24)

with different but related exponents [5]:
Ci(X,Y) = (-1)"1Cy(X,Y), i>2.

It is then clear that, by using (24) a similar algorithm can be designed to
get alternative expansions for cos(X + Y) and sin(X + Y), this time with
commutators appearing to the left. Also invariant expressions with respect
to the interchange X <+ Y can be easily generated by just considering a
symmetrized version of the previous expansions. Thus, for instance, from the
first line in eq. (7) we also get

cos(A + B) = cos(B + A) = (cos(B) cos(A) — sin(B) sin(4)) e31B.A]
and thus
cos(A + B) = = (cos(A) cos(B) — sin(A) sin(B)) o3[AB]

+ = (cos(B) cos(A) — sin(B) sin(4)) e~ 3zAB],

[Nl NOR S
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