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Abstract

We consider the numerical integration of high-order linear non-homogeneous
differential equations, written as first order homogeneous linear equations,
and using exponential methods. Integrators like Magnus expansions or
commutator-free methods belong to the class of exponential methods show-
ing high accuracy on stiff or oscillatory problems, but the computation of
the exponentials or their action on vectors can be computationally costly.
The first order differential equations to be solved presents an algebraic
structure (associated to the companion matrix) which allows to build new
methods (hybrid methods between Magnus and commutator-free meth-
ods). The new methods show similar accuracy as previous exponential
methods with a reduced complexity. Additional parameters can be in-
cluded into the scheme for optimization purposes. We illustrate how these
methods can be obtained and present several sixth-order methods which
are testes in several numerical experiments.

1 Introduction

In this work we consider the numerical integration of the Nth-order non-
autonomous and non-homogeneous linear differential equation

L(t)r = g(t), (1)
where £(t) is a non-autonomous linear operator
L)z =2M 4+ fy ()N 4k ) + folt)w (2)

and z,g € C™*4 f; e Cmxm g0) = ‘é;f
It is usual to write eq. (1) as a first order non-homogeneous linear system
of equations. However, to simplify the analysis, we write the non-homogeneous




problem as a! (N + 1)-dimensional homogeneous problem by introducing z =
(y, DT e CV Ly = (g1, )T = (2, 2T G(E) = (0,...,0,9()T €
C" which satisfies the homogeneous linear equation

d=M(t)z,  2(0) = (y(0),1)7, (3)
with
0 1 0 0 0
0 1 0
A(t) Gt : :
MW:( ogj\}) 0(1) ) - 1 o o | W
0 10
—fo e —fn—2 —fn-1 g
0 0 o0 0 0

where Oy is the zero vector of dimension N, and A € CV*¥ is the companion
matrix.

The second order autonomous matrix differential equations of Apostol-
Kolodner type [4, 17] and its generalization to higher order [16, 25]

W) = Mz

belong to this class. These equations have been extensively studied and the

formal solution can be written in a closed form in terms of a series expansion.

However, if the matrix M is time-dependent, a numerical method is required.
On the other hand, high order nonlinear differential equations of the form

F(t,z,o,...,a™M)y=0

arises in many fields in physics and engineering (see [5, 20, 22, 26] and references
therein) either with initial or boundary conditions. The shooting method for the
problem with boundary conditions usually requires the numerical integration
of a non-autonomous linear equation. The method of quasilinearization also
requires the numerical integration of non-autonomous linear equations of the
form (1) iteratively [5].

We also remark that the numerical integration of a close to a linear problem

Lt)z = g(t) + eN(t,x) (5)
where |e| < 1 and NV is a nonlinear operator depending on ¢, x, . .. ;W=D can
be efficiently carried out if the linear part is numerically integrated to a rela-
tively high accuracy and separately from the non-linear part. Then, splitting
methods for perturbed problems can be used and have shown a high perfor-
mance [9].

'For simplicity in the presentation and without loos of generality, we will take m = d = 1
and to = 0.



In the autonomous situation, the solution of (3) can be written in closed
form
2(t) = exp(tM)z(0) (6)

or, equivalently,

y(t) = ey (0) + tp(tA)g = y(0) + t(tA)(Ay(0) + g), (7)

where ¢(z) = (e* — 1)/z. In some cases it can be more convenient, from the
numerical point of view, to use approximations to the exponential matrix acting
on a vector and in some other cases it is preferable the use of the ¢ matrix acting
on a vector [1, 13, 19, 21, 24].

If the problem is explicitly time-dependent a closed-form solution is not
available and numerical methods have to be used on a time mesh (for simplicity,
we consider a constant time step: tg = 0,t; = h,...,txy = Nh = ty). Standard
methods like Runge-Kutta, multistep or extrapolation methods are, in general,
not suitable for problems where the matrix A has a relevant algebraic structure
(e.g. if fy—1 = 0 the system is volume preserving) or if the solution is oscillatory.

Alternatively, one can use exponential methods like Magnus and Fer expan-
sions or commutator-free methods. They preserve the algebraic structure of
the exact solution and show a high performance for stiff and oscillatory prob-
lems. The main drawback is the computational cost to compute the action of
the exponentials on vectors. While the computation of the exponential of a
companion matrix acting on a vector can be carried out at a moderate cost for
relatively small time steps, the exponents appearing in Magnus and Fer meth-
ods are much more involved (and computationally costly) due to their reduced
sparsity.

Commutator-free methods correspond, for this problem, to a composition of
exponentials of companion matrices and then can be computed efficiently. The
main difficulty is that at least two exponentials are necessary to obtain fourth-
order methods in the time step, h, and at least five for sixth-order methods?. In
addition, for methods of order greater than four, at least one of these companion
matrices has to be integrated backwards in time, and this could cause step-size
restrictions for stiff problems.

In this work we analyze the structure of the elements associated to the Lie
algebra generated by the matrix M (t) evaluated at a given set of points, say
M, = M(71),..., My = M(7y) for some values of 7q,...,7;. By definition, a
linear combination or commutators of elements of a given Lie algebra remain

2A four-exponential sixth-order method exists, but it shows a very poor performance and
it is not recommended in practice.



in the Lie algebra. In addition, we observe that

0O o 0 --- 0 0
o 0 0
k .
Co = ZGJMJ = o 0 0 (8)
j=1 0 o 0
—fo —fN—Q —fN—l g
0 0 0 0 0
where
k k k
a:Zaj, fizzajfi(Tj)v g:Zajg(Tj)
j=1 j=1 j=1

which we refer as a companion matrix when o # 0. Notice that, when o = 0
the computation the exp(Cy) is trivial.

The following properties for the exponential of matrices or their action on
vectors will be used in this work:

Given B; € CF2*ki j =1,2,3 with (k; + ko + k3 = k) we have that

3
O3,k O3,k
(9
If ky < k then, since By € C*2*#2_is very simple and cheap to compute (B
and to evaluate exp(B) or its action on a vector. Given v = (Vg,, Vky, Vks )"
C*, B = (By, Ba, B3) € C*2*k and denoting B-v = Byvg, + Bavy, +Bavy, € CF2,
we have that

Ok & Oy &
exp(B)=exp| B1 Bs Bj =Ipi+| @(B2)B1 ¢(B2)B2 ¢(B2)B
)
2)
(S

exp(B)v = (g, , vk, + p(B2)(B - v), Vg, ).

In addition, as we will see, for the schemes we obtain in this work the matrix
By will have a small norm, typically By = O(h®), with s > 2, and then we can
approximate the matrix ¢(Bsg), for example, using only the first few terms of
its Taylor expansion.

We also remark the following properties for some elements of the Lie algebra:

1. If c =0, then C,—¢ is a matrix with only one row with non zero elements

(k2 =1)

2. The commutator

[Cou 002] = 001002 - Coz 001

is a matrix with only two rows with non zero elements and it is also trivial
to compute the exponential of this matrix (kg = 2).

3. Each additional commutator introduces a new non empty row in the ma-
trix.



We analyze how to obtain numerical methods at different orders by consid-
ering exponentials of elements of the Lie algebra such that the evaluation of the
exponential for these elements can be cheaply and efficiently computed. Apart
from the order conditions, there are additional constraints to be considered,
for example, sixth-order methods without commutators necessarily involve the
exponential of a companion matrix, €“7, with a negative o.

Allowing exponentials of elements of the Lie algebra with a low computa-
tional cost which includes certain commutators, we derive sixth-order methods
with positive o.

1.1 Numerical integration by standard methods: Runge—Kutta
methods

We consider Runge—Kutta (RK) methods as a representative of standard nu-
merical integrators. The general class of s-stage (explicit or implicit) Runge—-
Kutta methods are characterized by the real numbers a;;, b; (4,5 = 1,...,s)
and ¢; = > %_, a;;. For this linear problem they take the form

s
Z; = Zn+hzaiijZj7 1=1,...,s
=1

S
Zntl = Zn+h Z b;M; Z;, (10)
i=1
where M; = M(t, + ¢;h). If a;; = 0, j > i then the method is explicit and
one can compute (and store) the vectors Z1,...,Zs sequentially. Otherwise,
the method is implicit and one has to solve the linear system of equations

I — ha11M1 —haleQ cee —halsMS Zl Zn
—ha21M1 I— h(IQQMQ tee —hCLQsMS Z2 Zn
—haslMl —haSQMQ I hassMs Zs Zn

Explicit RK methods require only s products M Z and they need to store
s vectors (M;Z;, i = 1,...,s). In this sense, RK methods can be considered
as very cheap methods. However, in general, they require s evaluations of
the functions f;(t) (some methods require less number of evaluations and this
depends on the nodes, ¢;, of the method) and, since they can be considered as
polynomial approximations to the solution, a poor performance is expected for
stiff and oscillatory problems.

On the other hand, implicit RK methods can reach order 2s and are suit-
able for stiff problems, but they require to compute the inverse of a matrix of
dimension (sN) x (sN) whose computational cost, in general, is s> times more
expensive than the inverse of a matrix of dimension N x N (e.g. for sixth-order
methods with s = 3 we have that the inverse of this matrix is about s3> = 27
times more expensive than the inverse of a matrix of dimension N x N).

Exponential methods like Magnus integrators or commutator-free methods
usually show a high accuracy and in this work, we propose new composition



of exponentials with similar accuracy at lower computational cost. The order
conditions for the new composition methods are obtained by equating with
the formal solution given by the Magnus series expansion in a similar way as
the Taylor method is used to obtain the order conditions for RK method after
expanding all terms. For this reason, we briefly review some results for Magnus
integrators.

2 Magnus based integrators

Given the homogeneous linear equation (3), with formal solution, z(¢) = ®(¢)z(0),
the Magnus expansion expresses the fundamental matrix solution in terms of a
single exponential as [18]

O(t) = exp(Q1), Q) =D Ut
k=1

whose terms, Q(t), are linear combinations of integrals and nested commuta-
tors involving the matrix M at different times. Thus, the first terms read

(1) —/OtM(tl)dtl, Qu(t) = ;/Otdtl /Otl dts[M (1), M(t)], ... (11)

The algebraic problem to numerically approximate €2 considerably simplifies

if we use the graded free Lie algebra generated by {aq,...,as} where
hz’-‘rl dzM t
i1 = —— ( ) (12)
i! dtt t=h/2
i =0,1,...,5s — 1. Here a; = O(h') and then it can be considered as an

element with grade ¢ = 1,2,..., s respectively. Using this grading, the algebraic
structure of the Magnus expansion up to a given order in the time step simplifies
considerably [15].

However, from the computational point of view, it is more convenient to
replace the elements «; (derivatives) by linear a combination of the matrix M (t)
evaluated at the nodes of a given quadrature rule (integrals). For example, it is
possible to build methods of order 2s with only s symmetric collocation points
[14].

In particular, up to second-order, we have? QO = o, up to fourth-order,
we have

1

ol — o, — = 1
and up to sixth-order
1 1 1 1 1 1
Qlol — g — —[12] 4+ ——[23] + —[113] — —[212] + —[1112] (14
ot g = 512+ a2l 4 G 8] = e 212+ op[1112] (14)

3We denote by QP! an approximation (no unique) to the solution  up to order AP, i.e.
QFl = Q + O(hP ).



where [ij ... kl] represents the nested commutator [ay, [y, [. .., [, oy .. .]]]. In
order to obtain methods which can be easily used with any quadrature rule
we introduce the averaged (or generalized momentum) matrices for the interval

[tm tn+1]

1 1 h/2

, tnth . 4
AD(n) = yx / (t—t12)" A(t)dt tHA(t +ty o) dt, (15)
tn

R

fori =0,...,5 —1 where t; 5 = t, + h/2.
To second order, we can take a; = A(®) (neglecting higher order terms), to
order four, we can set (see [7] and references therein)

o = A0, ay = 1240 (16)

and to order six

o) = %A(O) —154@)  ay =1240, a3 =—-1540 +1804@). (17)

If b;, ¢;, i =1,...,k denote the weights and nodes of a given quadrature rule
of order p > 2s, then the momentum matrices can be computed as
4 i 1\*
A(Z):thj <Cj—2) Aj, 1=0,...,8—1, (18)
j=1

with A; = A(t, + ¢jh), and the corresponding numerical methods will remain
of order 2s.

Notice that, while Q2 has the same sparsity as A, this is not the case for
QP! with p > 2, and then the computational cost of the exponential (or its
action on a vector) can grow considerably.

To circumvent this problem we can consider, for example, commutator-free
methods which we briefly present.

2.1 Commutator-free Magnus integrators

Commutator-free (CF) methods can be a simple and efficient alternative to
solve the non-autonomous problem (3). These methods can be written, for one
time step h, as the composition

Zn+1 = exp(hCy,,,) -+ exp(hCy,) exp(hCy,)zn (19)

where each Cy, has the structure given in (8) and must satisfy the consistency
condition Y ;" ; o = 1. Obviously, the coefficients involved on each exponent
as well as the value of m depend on the method.

Second order methods. Second order methods can be obtained with the
very simple scheme

Zn+1 = exp(aq)z, = EXp(M(O))Zn (20)



which can also be considered as a second order Magnus or Fer integrator, and
where we can approximate M), e.g.. using the midpoint or the trapezoidal
rule, i.e.,

MO = hM(t, +h/2)  or M(O):g(M(tn)-i-M(tn—i-h)).

Fourth order methods. Fourth order methods can be obtained for m > 2.
A simple two-stage method (m = 2) is given by [10] (using the relation (16))

1 1 1 1
Zpn+l = €Xp 5041-1-6062 exp 5041—6042 Zn

exp (;M(O) - 2M<1>> exp <;M(0) -~ 2M(1>> m (21)

where we can take, for example

) % M(t) +4M(t + h/2) + M(t + h)) Simpson rule
a % M(t+c1h) + M(t + czh)> Gaussian quadrature rule
u & (M(t +h) — M(t)) Simpson rule
% (M (t +c2h) — M(t + C1h)> Gaussian quadrature rule
Whereclz%—%7 cg:%+§_

With three exponentials, a standard method is

Zn4+1 = €Xp <1l2a2> exp (o) exp <—112a2> Zn
= exp (M(1)> exp (M(O)> exp (—M(1)> Zn. (22)

In general, the 2-exponential method provides slightly more accurate results.
However, for the problem of interest (3)-(4), it is obvious from (12) that oy =
hM (h/2) which has the structure of a companion matrix like (8), while the
matrices associated to «;, ¢ > 1 have only one non-zero row, i.e., they have the
form

ON—1)x(N+1)

ag = h? Fio(ve :
O1x(N+1)
where 0;;,x,, denotes a zero matrix of dimension mxn and Fxn41y = (F1,. .., Fy11)

denotes a row vector. Notice that for this particular problem, exp (M (1))
and exp (—M (1)) can be written in a very simple closed form and the three-
exponential method (22) is, in general, faster to be computed than the scheme
with only two exponentials (21), and can provide a better performance.



Example 1: Let us consider the following fourth-order non-homogeneus linear
equation A
2™+ ()2 + folt)e = g(1)

with

1 1.

fo(t)=100( 1+ 1 cos(t) |, fo(t) =501+ 1 sin(t) |, g = erf(t).
Notice that
MD2 =0 = exp (M(1>) — 7+ MO

and then the 3-exponential method, for this problem, is given by

O h 0 0 0
0O 0 h 0 0
(1 n M<1>) exp| 0O 0 0 h 0 ( 7 M(1)> (23)
— 0(0) 0 — 2(0) 0 g(o)
0O 0 0 0 0

being an algorithm with less complexity than the 2-exponential method because
it only requires exponentiation of one companion matrix.

In Figure 1 we show the 2-norm error of the fundamental matrix solution
at T = 10 versus the number of time dependent function evaluations of the
extended matrix M (t). We compare with the explicit standard 4-stage fourth-
order RK method (RK4) where M (t) is evaluated at the same nodes as the
Simpson rule, and the implicit 2-stage fourth-order RK method where M (¢) is
evaluated at Gaussian nodes (GaussL4). For the exponential methods we also
consider the Gaussian quadrature rule.

This problem has oscillatory solutions and the exponential methods are
much more accurate at the same number of time-dependent function evalu-
ations. However, the cost of a method also depends on its complexity. In
addition to the evaluation of the time-dependent functions, the explicit RK
method requires a few number of products (and to store 4 vectors), the implicit
RK method has to invert a matrix of twice the dimension of M (t), and it is con-
siderably more costly than the explicit method. The fourth-order exponential
integrators (Magnus integrator (Mag4), the 2-exponential CF method (CF42)
and the 3-exponential CF method (CF43)) require to approximate the exponen-
tials up to a given order of accuracy [1]. The method CF42 is the most accurate
but CF43, which is only slightly less accurate, is cheaper to compute. 0.

In general, sixth-order CF methods use compositions with m > 5 exponen-
tials [2, 10] and in each of them it appears a1, which is the element which makes
the computation of the exponential to be relatively involved. In addition, at
least in one of the exponentials 1 appears multiplied by a negative coefficient.
These results motivated us to extend the analysis to order six.

We analyze new composition methods which allows us to obtain sixth-order
methods with positive coefficients while being cheaper to compute that the
existing CF methods.



T

—6— Mag4

—&— CF42

—#*— CF43
RK4

— — — GaussL4

LOG,, (ERROR)

‘ ‘
25 3
LOG,, (--EVAL)

Figure 1: Error in norm of the fundamental matrix solution, ||®(7,0) —
4, (T,0)||, where &, denotes the numerical solution for a given method, versus
the number of time-dependent function evaluations for the problem in Example
1.

3 New hybrid composition methods

In addition to the simplified structure of the matrix associated to ciy we observe
that in the system (3)-(4) the following elements of the Lie algebra show a very
similar structure

O(N—1)x(N+1) - O(N—2)x(N+1)
ag = h’ Gix(N+1) ; [aj, o] = W7 Ko (n+1) ;
01 (N+1) 015 (V+1)

i.e., they only contain one and two non-empty rows and their norms are pro-
portional to O(h3) and O(h/TF), respectively.

The goal is to build composition methods with as few exponentials involving
the element oy as possible to reach a given accuracy and leaving the remaining
exponentials with cheaply computable matrices.

In addition, in this work we only consider time-symmetric methods, i.e., a
map S(h) such that S~!(h) = S(—h). This approach simplifies the construction
of methods and the methods share this property with the exact solution. In gen-
eral, the most efficient composition methods in the literature have this symme-
try. In order to consider a symmetric composition we proceed as follows, given
Ci(h),C2(h) odd and even functions of h, i.e., Ci(—h) = —C1(h), Ca(—h) =
Cy(h), then if Si(h) is a symmetric composition the following composition

Spi1(h) = C1WFC2(h) gy () (Cr(h)=Ca(h)

is also time-symmetric.
We denote the scheme by the number of exponentials involving «; and the
following sixth-order methods are studied.

10



One-exponential method Let us start with the fourth-order method (22)
and suppose we use a sixth-order quadrature rule so, ag can be added to the
symmetric composition and it can be used for optimization purposes, i.e.,

1 1
(I):[))4] = exp <12a2 + z2a3> exp (a1 + z13) exp <—12a2 + 22a3> . (24)

This schemes has two parameters, zi,z2, to be chosen. Using the Baker-
Campbell-Hausdorff (BCH) formula and equating to (14) we find that, by con-
sistency, z1 + 229 = 1/12, and this leaves us with a free parameter which can
be used to reduce the error. Since z1, zo multiply as, they will appear linearly
on the leading error terms at order 5 in [23] and [113]. If we consider that the
commutator [113] (which contains two operators «1) is more relevant for the
error of the method, we can use the free parameter to cancel this term.

On the other hand, since a commutator contains only two non-empty rows,
we could add to the first and last exponential a linear combination of the com-
mutators [12], [13] and [23]. Since [12], [23] are odd operators in h we will include
them symmetrically distributed while [13] being an even operator in h will be
distributed skew-symmetrically. In this way, we obtain the following symmet-
ric composition scheme which contains six free parameters to solve the order
conditions

@[16] _ 622a2+23a3+[a1 +zaa0,25001 +26003]

ea1+Z1a3 (25)

e~ 7202 tz3a3+[—ontza02, 2501 +2603]

Apparently, there is the same number of order conditions as parameters, how-
ever, we found that there is a free parameter which we can use to reduce some
of the error terms at leading order. In a similar way to the optimization process
mentioned for the fourth-order method, we choose this parameter to cancel the
coefficient which multiplies [11113]. The solution obtained is:

1 1 1 3 1 1
%, Zzzﬁ, 23 — /¢ 2’4:—1, 252%, Zﬁzﬁ.

The next question is: can we obtain an eight-order method adding new
terms of similar complexity to the previous scheme?

If we use an eight-order quadrature rule, we have to take into account ay in
the scheme, but now we have to consider that

z1 =

ol — il _ Ly
80

+£([34], [124], [223], [313], [412], [1114], [1123], [1312], [2113], [2212],
[11113], [11212], [21112], [111112]),

where QU9 is given in (14) and £ denotes a linear combination of the elements
which are of order O(h”). The composition we can build is:

@[16] —  ero2tasastlartzios,zsantzeas]taaataz(14]+as(24] +aa[34]
€a1+21a3 (26)
7202 +zzaz+[—a1tzaa,z501+2z603] —a1aataz|[14]—az[24]+a4 [34] ]

11



We have four new parameters, a1, as,as,aq multiplying terms with a4 which
must satisfy a1 +2z5a3 = 1/80 in order to match the condition for [14] which is
necessary for the method to be of order six. The three remaining parameters are
used to reduce the error from the terms [34], [124], [412], [1114]. To reach order
eight, 11 parameters are needed, but only 10 independent terms are available
including all combinations with double commutators, and this has not been
explored.

If an eight-order quadrature rule is used, the following relations must be
used [§]

a1 = 940 — 1542, g = 15(5A0) — 28 4B)),
as = —1540) £ 180AP) ay = —140(341) — 204®)).

Two-exponential method We next explore the following scheme with seven
parameters to solve six order conditions leaving a free parameter:

<I>[26] —  emoetuaztatzsazzeartaras] o1 /2+z1astz2as (27)

eQ1/2— 2100+ 2003 — 2302+ 2403 +[—a1+2502, 2601 +27003]

There is a free parameter that, as in the previous case, is used to cancel the
coefficient at order seven which multiplies [11113]. The solution obtained is:

1 89 3 25 51 61 61
21 = — 29 = ——— 3 = — 24 = — = —_— 6 — ——— z
! » 2T g5360 T 800 YT 1134 976> % 1530" 7

10 = = 63040°

Three-exponential method We propose a new CF methods, and this im-
plies to allow one of the coefficients multiplying « to be negative. The following
CF method is considered

(I)[G] _ 626042+Z7a3 e?31 +z4a2+2z503 el +z203 %301 *Z4a2+25a36*2602+27a3
3 = .

Two real solutions are obtained, one with z; < 0 and one with z3 < 0. The
solution with z; < 0 is:

z1 = —0.134081437730954855148833, 29 = —0.012669129450624949118909,

z3 = 0.567040718865477427574417,  z4 = 0.156797955467217572935920,

z5 = 0.032555028141095211662211, 2z = 0.015446203250883929563910,

z7 = 0.015446203250883929563910.

(28)

At least three exponentials including « are necessary in order to solve the order
conditions associated to the elements of the algebra aq,[12] and [1112]. That
was not possible with the one- and two-exponential methods.

4 Numerical Examples

In this section we analyse the performance of the following methods:

12



—&— CF6
—6— Mag6
RK6 |
— — — GaussL6
—&— H63
—o— H61
—#— H62

Figure 2: Same as Fig. 1 for the sixth-order methods. Here H63 and H64
denote the new sixth-order hybrid methods with three and four exponentials
given by (25) and (27), respectively.

e The 7-stage sixth-order explicit RK method (RK6) with coefficients given
in [12, page 177] which requires 5 new evaluations of the matrix M(¢) per
step.

e The 3-stage sixth-order implicit Runge-Kutta-Gauss-Legendre method
(GaussL6) which requires 3 new evaluations of the matrix M (t) per step.

e The one-exponential sixth-order Magnus integrator (Mag6) using the Gauss
quadrature rule [8].

e The 6-exponential sixth-order CF method from [2].

e The 1-exponential sixth-order Hybrid method (H61) given in (25).
e The 2-exponential sixth-order Hybrid method (H62) given in (27).
e The 3-exponential sixth-order Hybrid method (H63) given in (28).

As a first test, we repeat the numerical integration in Example 1. The
results are shown in Figure 2. We observe that all exponential methods are
clearly superior to the explicit and implicit RK methods. The CF6 method is
the most accurate, but the hybrid methods are cheaper to compute. Obviously,
the relative computational cost between them will depend on each particular
problem, but the the cost of H61 and H62 could be up to twice cheaper the cost
of the method CF6. In addition, these two methods have positive coefficients
multiplying aq and this could be of interest for some problems.

As we have mentioned, the solution of this equation is oscillatory. When
the coefficients of the equation oscillate with a frequency close to the frequency
of the system, a parametric resonance can appear. This is the case, e.g. for the
well known Mathieu equation 2" + (w? + € cos(t))z = 0 for w close the resonant
values w =0,1,2,....

13



e=1/10, t=10 e=1/10, t=100

—&— CF6

—6&— Mag6
RK6

— — —GaussL6

—8— H63

—O—H61

—#*— H62

14 16 18 2 22 24 - 24 26 28 3 32 34

e=1/2, t=10 e=1/2, =100

Figure 3: The two-norm error in the fundamental matrix solution for the sixth-
order methods applied to the problem (29)-(30) computed at the final times
ty = 10 (left figures) and ty = 100 (right figures) for the choices e = 1/10 (top
figures) and e = 1/2 (bottom figures).

Example 2: Let us now consider the same fourth-order non-homogeneus lin-
ear equation

)+ fo(t)z” + fo(t)w = g(t) (29)
but with

fo(t) =5(1 + ecos(wt)), fa(t) =4 (1 + esin(wt)), (30)

that has parametric resonances for values of w around w = 1 and w = 2. We
take w = 2 and integrate the fundamental matrix solution until the final time
ty = 10 and we repeat it until £ = 100. The solution is very sensitive to
the parameter e and we repeat the computations for e = 1/10 and e = 1/2.
Figure 3 shows the results obtained.

We observe that the error grows with the final time as well as with the choice
of the parameter e, and the new hybrid methods show an excellent performance
since they are among the most accurate as well as the cheapest to compute
(despite the explicit RK method which show a very poor performance). Similar
results are obtained for the numerical integration of the Mathieu equation for
values of the parameters on the instability region. If one is interested to find
the stability regions for a given set of parameters of the equation, usually this
is done with the numerical integration of the equations repeatedly for many
different choices of the parameters, and efficient methods need to be fast and
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accurate, being the methods presented in this work of great interest for these
problems.

5 Conclusions

We have studied the numerical integration of high-order linear non-homogeneous
differential equations written as first order homogeneous linear equations (which
show a particular algebraic structure in terms of the companion matrix) using
exponential methods. We have shown how to build new methods which can be
considered as hybrid methods between Magnus and commutator-free methods.
The new methods can reach similar accuracy as previous exponential methods,
but with a reduced complexity. Additional parameters can be included into
the scheme for optimization purposes. We have shown how to obtain the order
conditions to build sixth-order methods and several methods are obtained. The
performance of the new methods has been tested on several numerical problems.

As a further application of the results of the present work, we remark that
homogeneous non-autonomous linear differential equations describe the evolu-
tion of many dynamical systems in classical and quantum mechanics (see [6, 7]
and references therein) as well as in biology [23] or engineering [3, 5, 11]. It is
straightforward to extend the here presented analysis to the class of homoge-
neous non-autonomous equations

¥ = M(t)x, (31)

where M(t) = A+ B(t) such that the evaluation of exp(M(t)) is computation-
ally demanding but exp(B(t¢)) can be trivially computed. One can either use
the methods derived in this work or build new exponential methods for partic-
ular problems. This requires the analysis of the Lie algebra associated to the
Matrix M (t). If the analysis carried out on a family of problems indicate that
some other elements of the Lie algebra can also be efficiently computed, these
elements can also be considered in the scheme in a similar way as shown in this
work.

On the other hand, it is well known that the computational cost of a given
method strongly depend on the problem to be solved. As we have mentioned,
an s-stage fully implicit RK method requires to compute the inverse of a large
matrix which is about s® times the cost of the inverse of a N x N matrix, and
the inverse of a matrix can be carried out at the cost of 4/3 the product of
two matrices [1]. Then, for a sixth-order method with s = 3 the total cost is
3 evaluations of the M (t) and 33% = 36 products. On the other hand, one can
approximate " using a Padé approximation up to accuracy of order O(h'?)
with 3 products and one inverse, i.e. at the cost of only (4 + 1/3) products
(or using the Paterson-Stockmeyer scheme to compute the Taylor expansion up
to O(hY) with only 4 products [1]). Obviously, the cost of each matrix-matrix
multiplication will depend on the sparsity of the matrix, and this is different for
Magnus and commutator-free methods as well as for the new methods. This
analysis has to be taken into account to consider the most efficient methods
for a given class of problems or to build new methods following the procedure
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studied in this work (where we can add extra parameters for optimization)
being an interesting problem to be considered.
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