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Abstract

We present a practical algorithm based on symplectic splitting meth-
ods intended for the numerical integration in time of the Schrödinger equa-
tion when the Hamiltonian operator is either time-independent or changes
slowly with time. In the later case, the evolution operator can be effec-
tively approximated in a step-by-step manner: first divide the time in-
tegration interval in sufficiently short subintervals, and then successively
solve a Schrödinger equation with a different time-independent Hamilto-
nian operator in each of these subintervals. When discretized in space,
the Schrödinger equation with the time-independent Hamiltonian opera-
tor obtained for each time subinterval can be recast as a classical linear
autonomous Hamiltonian system corresponding to a system of coupled
harmonic oscillators. The particular structure of this linear system allows
us to construct a set of highly efficient schemes optimized for different
precision requirements and time intervals. Sharp local error bounds are
obtained for the solution of the linear autonomous Hamiltonian system
considered in each time subinterval. Our schemes can be considered, in
this setting, as polynomial approximations to the matrix exponential in
a similar way as methods based on Chebyshev and Taylor polynomials.
The theoretical analysis, supported by numerical experiments performed
for different time-independent Hamiltonians, indicates that the new meth-
ods are more efficient than schemes based on Chebyshev polynomials for
all tolerances and time interval lengths. The algorithm we present au-
tomatically selects, for each time subinterval, the most efficient splitting
scheme (among several new optimized splitting methods) for a prescribed
error tolerance and given estimates of the upper and lower bounds of the
eigenvalues of the discretized version of the Hamiltonian operator.
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Matemàtiques, Universitat Jaume I, E-12071 Castellón, Spain.

3Konputazio Zientziak eta A.A. saila, Informatika Fakultatea, UPV/EHU,
Donostia/San Sebastián, Spain.

∗Email: serblaza@imm.upv.es
†Email: Fernando.Casas@uji.es
‡Email: Ander.Murua@ehu.es

1



1 Introduction

When investigating the dynamical behavior of quantum systems of low to
moderate dimension, very often it is necessary to solve numerically the time-
dependent Schrödinger equation (~ = 1)

i~
∂

∂t
ψ(x, t) = Ĥ(t)ψ(x, t), ψ(x, 0) = ψ0(x). (1)

Here Ĥ(t) is a time-dependent Hamiltonian operator, ψ : Rd × R −→ C is the
wave function representing the state of the system, and ψ0(x) is the initial state.

We assume that the Hamiltonian operator changes slowly with time, so that
the evolution operator can be effectively approximated in a step-by-step man-
ner. We first subdivide the time integration interval in a number of sufficiently
short subintervals of length τ , and then compute approximations ψk = ψ(·, tk)
of the wave function at times tk = kτ , k = 1, 2, 3, . . ., by successively solving
(1) but now with a time-independent Hamiltonian operator Hk in each of these
subintervals [tk−1, tk]. As suggested in [10], it is natural to choose the matrix
Hk corresponding to a first order Magnus approximation [20], namely,

Hk =
1

τ

∫ tk

tk−1

Ĥ(t) dt. (2)

Typically, Ĥ(t) = T̂ + V̂ (t), with the kinetic energy operator T̂ = −∆/(2µ)
for a reduced mass µ > 0 and a time-dependent potential V̂ (t), in which case,
Hk = T̂ + V k, where V k is the average of V̂ (t) over the interval [tk−1, tk].
Of course, considering higher order Magnus approximations is also possible [4],
and particularly interesting if the Hamiltonian operator Ĥ(t) does not vary very
slowly with time. See for instance [5, 16] for other alternatives for the case of
strongly time-dependent Hamiltonian operators.

When discretized in space, the Schrödinger equation with the time-indepen-
dent Hamiltonian operator obtained for each time subinterval [tk−1, tk] can be
recast as a classical linear autonomous Hamiltonian system corresponding to a
system of coupled harmonic oscillators. Several techniques can be used for the
space discretization, depending on the particular problem one aims to analyze:
finite difference schemes, spectral methods based on collocation with trigono-
metric polynomials, Galerkin method with a Hermite basis, etc, both in one
or more dimensions (see [19] and references therein). The space discretization
process restricts the energy range of the approximation and imposes an upper
bound to the high frequency components represented by the discrete solution.

In any event, once this process has been carried out, one is led to compute
uk ∈ CN for k = 1, 2, 3, . . ., where the sequence {uk} now represents a fully
discretized version of the wave function ψ(x, t) at the time grids points tk and
the N space grid points, with N usually a large number. Here, uk = u(tk),
k = 0, 1, 2, . . ., where u(t) is the solution of

i
d

dt
u(t) = H̃(t)u(t), u(0) = u0 ∈ CN , (3)
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H̃(t) is a piecewise constant N ×N matrix,

H̃(t) = Hk for t ∈ [tk−1, tk],

and each Hk is a discretized counterpart of the averaged Hamiltonian operator
(2). The N × N matrices Hk (and in particular its discrete spectra) depends
of course on the particular space discretization carried out. We will hereafter
assume that each Hk is a real symmetric matrix which implies that it can be
diagonalized with real eigenvalues.

As H̃(t) is piecewise constant, the initial value problem (3) can be exactly
solved in terms of matrix exponentials e−i τ Hk , and we are led to compute uk
for k = 1, 2, . . . as

uk = e−i τ Hk uk−1. (4)

However, computing e−i τ Hk by diagonalizing the constant matrix Hk (usually,
of large dimension and large norm) might be exceedingly costly for some prob-
lems.

In the present work, we focus on developing efficient approximations to
e−i τ Hv for arbitrary N ×N real symmetric matrices H and arbitrary vectors
v ∈ CN by only performing matrix-vector products of the form Hv. Our final
goal is to produce an efficient algorithm that computes e−i τ Hv for given τ ∈ R
and v ∈ CN within a prescribed error tolerance with a minimum number of
matrix-vector products Hv. This algorithm is based on symplectic splitting
methods.

Of course, the error coming from the approximation to the exponential
in (4) is only one of the contributions to the error of the global process of
constructing the approximation {uk} to the solution of the original problem
(1). In addition, the space discretization error and the error of the first order
Magnus approximation should also be taken into account. Depending on the
magnitude of the two later error contributions, one should choose more or less
stringent error tolerances for the approximate computation of the expressions
e−i τ Hk uk−1 in (4).

Our approach for approximating e−i τ Hv is closely related to other polyno-
mial approximations of the form

e−i τ Hv ≈ Pm(τ H)v, (5)

where Pm(y) is a polynomial in y that approximates the exponential e−i y.
Here also multiplications of the matrix H with vectors v are only involved, and
these can be evaluated in complex variables with the complex-to-complex Fast
Fourier Transform (FFT) algorithm [7, 14, 15, 17]. Different choices for such
Pm(y) are available, namely truncated Taylor or Chebyshev series expansion of
e−i y for an appropriate real interval of y, or a Lanczos approximation, where
the polynomial is determined by a Galerkin approximation on the Krylov space
spanned by v,Hv, . . . ,Hm−1v [25].

The main difference of our procedure with respect to the polynomial ap-
proximation (5) is the following. Wereas in (5) the approximation of e−i τ Hv
is obtained by computing products of the form Hv, where v ∈ CN , with sym-
plectic splitting methods one writes v = q + ip, q, p ∈ RN , and the algorithm
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proceeds by successively computing real matrix-vector products Hq and Hp
with different weights. In this way, the real and imaginary parts of e−i τ Hv are
approximated in a different way, with a considerably reduced computational
cost. More specifically, if a spatial discretization based on Fourier spectral
methods is considered, then the cost of computing Hv, v ∈ CN , amounts es-
sentially to one complex-to-complex FFT and its inverse, whereas in the case
of Hv, v ∈ RN , one has to evaluate one real-to-complex FFT and its inverse
complex-to-real FFT, and this process requires half the computing time of the
fully complex case.

Although initially motivated by the integration in time of the Schrödinger
equation (1), the algorithm proposed in this paper can indeed be applied to
approximate e−i τ Hv for any real symmetric matrix H and any complex vector
v under the same assumptions as the Chebyshev method. As a matter of fact,
the theoretical analysis carried out here and supported by numerical experi-
ments performed for different real symmetric matrices H, indicates that our
new symplectic splitting schemes for approximating e−i τ Hv are more efficient
than schemes based on Chebyshev polynomials for all tolerances and values of
τ . The algorithm we present automatically selects the most efficient splitting
scheme (among several new optimized splitting methods) for a prescribed error
tolerance, values of τ , and given estimates of the upper and lower bounds of
the eigenvalues of the matrix H, Emin and Emax. As a result, it turns out to
be between 1.4 and 2 times faster than the Chebyshev method for the same ac-
curacy. In addition, the favorable geometric properties of symplectic splitting
methods [3] result (compared to Chebyshev) in reduced energy and unitarity
errors for large values of τ . The computation of the coefficients of the schemes,
which constitutes a non-trivial task by itself, is largely based on the stability
and error analysis of splitting methods carried out in [2, 3].

In recent years several efficient numerical integration techniques for the time
integration of the linear and nonlinear Schrödinger equation have been proposed
and analyzed. We can mention, in particular, the so-called unitary split opera-
tor algorithms, which take advantage of the usual separation of the Hamiltonian
into kinetic and potential energy, H = T + V , to construct compositions of the
form e−ibmτV e−iamτT · · · e−ib1τV e−ia1τT , where {ai, bi} are appropriately cho-
sen real coefficients [12, 29, 23, 30]. In the context of disordered systems, the
resulting discrete nonlinear Schrödinger equation has been integrated by high
order symplectic schemes in [22] and [26]. In this last reference, methods de-
signed by the present authors for near integrable Hamiltonians [1] have been
shown to be quite efficient for this problem. However, all the theoretical results
concerning the error analysis of unitary split operator methods we have found in
the literature, in contrast to Chebyshev based methods or symplectic splitting
methods, depend on some assumptions on the smoothness of the initial state.

The plan of the paper is the following. Since our procedure, in contrast
with the above mentioned techniques, may be considered as an alternative to the
Chebyshev method, in section 2 we summarize the main features of the schemes
based on this polynomial approximation of e−iτ Hv. In section 3 we perform an
error analysis of symplectic splitting methods in this context, and the actual
algorithm is presented in section 4. Next, the efficiency of our algorithm for
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approximating e−iτ Hv is compared with Chebyshev (and Taylor as a reference)
in section 5 on a pair of selected numerical examples involving constant matrices
H.

2 Polynomial approximations

2.1 General considerations

As we have seen, to get the solution of the discretized version (3) of the
Schrödinger equation (1), one has to compute uk = u(tk) for k = 1, 2, 3, . . ..
This is done by successively evaluating in (4) the product of a matrix expo-
nential e−i τ Hk with a vector uk−1CN . Here, τ is the length of the subintervals
[tk−1, tk]. In what follows, we focus on the approximate computation of e−i τ Hv
for given N ×N real symmetric matrix H, complex vector v ∈ CN , and τ ∈ R.
We will refer to τ as the target time-step.

Assume that Pm(y) is a mth degree polynomial approximating the function
e−i y in some sense. Then, e−i τ Hv can be approximated by Pm(τ H) v, with an
error that is bounded (in Euclidean norm) as

‖Pm(τ H) v − e−i τ Hv‖ ≤ ‖Pm(τ H)− e−i τ H‖ ‖v‖
≤ max

j=0,1,...,N−1
|Pm(τ Ej)− e−i τ Ej | ‖v‖

in terms of the (real) eigenvalues E0, . . . , EN−1 of H. Assuming that the
spectrum σ(H) = {E0, . . . , EN−1} is contained in an interval of the form
[Emin, Emax], then

‖Pm(τ H)− e−i τ H‖ ≤ sup
τ Emin≤y≤τ Emax

|Pm(y)− e−i y|.

There are several possibilities to estimate Emax and Emin for different classes
of matrices (see e.g. [11, 21, 31, 32]). If H can be decomposed as the sum
H = T +V of two symmetric matrices with known lower and upper bounds for
their eigenvalues, Emin (resp. Emax) can be simply obtained as the sum of the
lower (resp. upper) bounds of the eigenvalues of T and V . This happens, in
particular, when the Hamiltonian operator Ĥ = −∆/(2µ) + V̂ is discretized by
spectral Fourier collocation with N Fourier modes, in which case

Emin = min
x
V (x), Emax =

1

2µ

N2

4
+ max

x
V (x). (6)

In any case, once Emin and Emax have been determined, we introduce

α =
Emax + Emin

2
, β =

Emax − Emin

2
, H = H − αI, (7)

so that the spectrum of the shifted operator H is contained in an interval
centered at the origin, σ(H) = {E0 − α, . . . , EN−1 − α} ⊂ [−β, β]. We thus
have

e−i τ H v = e−i τ α e−i τ H v. (8)
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Hence, we will hereafter assume without loss of generality that our problem
consists in approximating e−i τ Hv for a real symmetric matrix H with σ(H) ⊂
[−β, β]. In that case,

‖Pm(τ H)− e−i τ H‖ ≤ εm(β τ) (9)

where
εm(θ) ≡ sup

−θ≤y≤θ
|e−i y − Pm(y)|. (10)

2.2 Taylor polynomial approximation

The mth degree Taylor polynomial P Tm(y) corresponding to e−i y is of course

P Tm(y) ≡
m∑
k=0

(−i)k

k!
yk, (11)

and Horner’s algorithm provides an efficient way to compute the approximation
v∗ = P Tm(τ H)v of e−i τ H v, namely

y0 = v
do k = 1,m

yk = v − i τ

m+ 1− k
Hyk−1

enddo
v∗ = ym.

(12)

The process requires storing three complex vectors (or equivalently, 6 real vec-
tors).

An error estimate of the form (9) can be obtained with εm(θ) in (10) replaced
by its upper bound

εTm(θ) ≡ θm+1

(m+ 1)!
. (13)

Since m! ∼
√

2πm (me)m for large values of m [24], we can write

εTm(θ) ∼ 1

e
√

2πm

(
θ e

m

)m+1

.

In consequence, we cannot expect to have a reasonably accurate approximation
P Tm(τ H)v of e−i τ Hv unless

m > e θ = eβ τ.

In other words, increasing the value of the target time-step τ and/or refining
the spatial discretization (so that β gets larger) requires evaluating a higher
degree Taylor polynomial.
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2.3 Chebyshev polynomial approximation

The Chebyshev polynomial expansion scheme, proposed for the first time in
the context of the Schrödinger equation in [27], constitutes a standard tool
to approximately compute (4). A detailed analysis of the procedure, including
error estimates for the problem at hand, can be found in [19]. For completeness,
we review here some of its main features.

The mth degree truncation of the Chebyshev series expansion of e−i y in the
interval y ∈ [−θ, θ] is given by

PCm,θ(y) ≡ J0(θ) + 2

m∑
k=1

(−i)kJk(θ)Tk(y/θ), (14)

where for each k, Jk(t) is the Bessel function of the first kind [24] and Tk(x) is
the kth Chebyshev polynomial generated from the recursion

Tk+1(x) = 2xTk(x)− Tk−1(x), k ≥ 1 (15)

and T0(x) = 1, T1(x) = x. According with the analysis in [19], e−i τ Hv can
be approximated by PCm,βτ (τ H)v with an error estimate of the form (9), where
εm(θ) in (10) is replaced by its upper bound

εCm(θ) ≡ 4

(
e1−θ2/(2m+2)2 θ

2m+ 2

)m+1

. (16)

In Figure 1 we depict the minimum degree m as a function of θ = βτ of
Chebyshev approximations for prescribed tolerances tol = 10−4, 2×10−7, 10−11,
so that εCm(βτ) ≤ tol (continuous lines) in comparison with the corresponding
degree m for Taylor approximations (dashed lines) such that εTm(βτ) ≤ tol.
Notice that Chebyshev always gives a similar accuracy with a lower degree
polynomial (hence, with less computational cost), with a gain in efficiency of
up to a factor of two for sufficiently large values of θ = βτ .

Once the degree of the polynomial m has been chosen, given a certain er-
ror tolerance, target time-step τ , and bound β of σ(H), one has to compute
PCm,βτ (τ H) v as efficiently as possible. This can be done with the Clenshaw

recursive algorithm as follows: first evaluate the coefficients ck = (−1)kJk(βτ)
for k = 0, 1, . . . ,m and then compute recursively

dm+2 = 0, dm+1 = 0
do k = m,m− 1, . . . , 1, 0
dk = ck v + 2

βHdk+1 − dk+2

enddo
v∗ = d0 − d2,

(17)

which produces v∗ ≡ PCm,βτ (τH) v ≈ e−i τ Hv as output. Clenshaw algorithm

keeps only four complex vectors in memory1, but the whole procedure has to

1If the vectors are written in their real and imaginary part, and the algorithm is carried
out in real variables, then the algorithm needs to store only seven real vectors instead of eight.
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Figure 1: Comparison of the required minimum polynomial degree m as func-
tion of θ = βτ for Taylor (dashed line) and Chebyshev (continuous line) for
different values of error tolerance: tol = 10−4, 2 × 10−7, 10−11. Diamonds,
squares and circles stand for the computational cost (equivalent to a polyno-
mial approximation of degree m) for error tolerances below 10−4, 2× 10−7 and
10−11, respectively, obtained with symplectic splitting schemes in Table 1.

be carried out for each value of m. Since the coefficients ck are relatively small
as k grows, the Clenshaw algorithm is stable and so it is possible to work with
polynomials of very high degree (even in the thousands) provided the Bessel
functions are accurately computed.

3 Symplectic splitting methods

3.1 General considerations

An alternative to Chebyshev polynomial approximations of e−i τ Hv first con-
sidered in [9, 10] consists in applying specially designed splitting methods to
numerically integrate the system

i
d

dt
u = Hu, (18)

recast in a more suitable form: By considering

z =

(
Re(u)
Im(u)

)
∈ R2N ,
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equation (18) is equivalent to

d

dt
z = (A+B)z, (19)

where

A =

(
0 H
0 0

)
, B =

(
0 0
−H 0

)
. (20)

Thus, computing v∗ = e−i τ Hv, where v = q+ ip and v∗ = q∗+ ip∗, is equivalent
to evaluating (

q∗

p∗

)
= eτ (A+B)

(
q
p

)
.

The matrix exponential eτ (A+B) can be written as O(τ H) in terms of the
orthogonal and symplectic matrix

O(y) =

(
cos(y) sin(y)
− sin(y) cos(y)

)
. (21)

To introduce general symplectic splitting methods in this setting, let us first
show how the well known Strang splitting can be used to approximate e−i τ Hv.
Let m be a sufficiently large positive integer, so that for ∆τ = τ/m, we consider
the approximation

e∆τ(A+B) ≈ e
∆τ
2
A e∆τB e

∆τ
2
A.

It is then clear that

eτ (A+B) =
(

e∆τ (A+B)
)m

≈
(

e
∆τ
2
A e∆τB e

∆τ
2
A
)m

= e
∆τ
2
A
(
e∆τB e∆τA

)m−1
e∆τB e

∆τ
2
A,

or equivalently,

O(τ H) = eτ (A+B) ≈ K(τ H) = eτ am+1 A eτ bmB eτ am A · · · eτ b1B eτ a1 A, (22)

with

(a1, b1, a2, . . . , am, bm, am+1) =

(
1

2m
,

1

m
,

1

m
, . . . ,

1

m
,

1

m
,

1

2m

)
. (23)

Due to the nilpotent structure of the matrices A and B in (20), the exponentials
in the definition (22) of K(τ H) take a particularly simple form, namely

eτ aj A =

(
I aj τ H
0 I

)
, eτ bj B =

(
I 0

−bj τ H I

)
. (24)

This analysis shows that the approximation (22) can be used to approximately
compute v∗ = e−i τ Hv with the following procedure, similar in nature and
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equivalent in computing time to the Horner (12) and Clenshaw (17) algorithms:
Given v ∈ CN ,

q := Re(v),
p := Im(v),
do k = 1,m
q := q + ak τ H p
p := p− bk τ H q

enddo
q := q + am+1 τ H p
v∗ := q + ip,

(25)

producing v∗ ≈ e−i τ Hv as output. Notice that it only requires storing three
real vectors of dimension N (namely q, p, and w = Hp or w = Hq) instead
of seven real vectors for the Clenshaw algorithm and six real vectors for the
Horner algorithm. It is worth remarking that, since eA and eB are symplectic
matrices, K(τ H) is also symplectic.

In practice, and in the same way as other polynomial approximations, it is
convenient to apply Algorithm (25) with the original H replaced by the shifted
version H considered in (7) (and then make use of the equality (8)), so that the
spectrum of H is contained in an interval of the form [−β, β] with β as sharp
as possible. Therefore, in what follows we always assume that σ(H) ⊂ [−β, β].

Although Algoritm (25) with coefficients (23) can be used in principle to
approximate e−i τ Hv, we next show that, for given values of m and θ = βτ ,
much better approximations can be obtained if other sequences of coefficients
(a1, b1, a2, . . . , am, bm, am+1) are chosen instead. To see how this can be done,
an error estimate of the corresponding approximation (22) is necessary first.

3.2 Error analysis

For a given finite sequence of real numbers

(a1, b1, a2, . . . , am, bm, am+1), (26)

Algorithm (25) produces an approximation of the form(
q∗

p∗

)
= K(τ H)

(
q
p

)
≈ eτ (A+B)

(
q
p

)
,

or equivalently, q∗ + i p∗ ≈ e−i τ H(q + i p), with

K(τ H) =

(
K11(τ H) K12(τ H)
K21(τ H) K22(τ H)

)
. (27)

Here K11(y), K22(y) are even polynomials of degree 2m, K12(y) and K21(y)
are odd polynomials of degree 2m− 1 and 2m+ 1 respectively, and detK(y) =
K11(y)K22(y) −K12(y)K21(y) ≡ 1. It is important to remark that for a given
positive integer m, compared to Horner’s (12) and Clenshaw’s (17) algorithms,
the degree of the polynomials involved in an m-stage splitting method (26) is
twice the degree of the corresponding Taylor and Chebyshev polynomials, with
the same computational cost.
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3.2.1 Error estimates for a single application of a splitting method

We next focus on obtaining upper bounds for the error

‖(q∗ + i p∗)− e−i τ H(q + i p)‖ =

∥∥∥∥K(τ H)

(
q
p

)
−O(τ H)

(
q
p

)∥∥∥∥
≤ ‖K(τ H)−O(τ H)‖ ‖q + i p‖

in Euclidean norm. Since H is assumed to be a real symmetric matrix, it can
be diagonalized as

H = P T


E0 0 · · · 0
0 E1 · · · 0

0 0
. . . 0

0 · · · 0 EN−1

 P,

where P is an orthogonal N ×N matrix. We thus have

K(τ H)−O(τ H) = P T E P,

where E is the block-diagonal matrix (with 2× 2 matrices at the diagonal)
K(τ E0)−O(τ E0) 0 · · · 0

0 K(τ E1)−O(τ E1) · · · 0

0 0
. . . 0

0 · · · 0 K(τ EN−1)−O(τ EN−1)

 ,

and therefore

‖K(τ H)−O(τ H)‖ ≤ ‖E‖ = max
j=0,1,...,N−1

‖K(τ Ej)−O(τ Ej)‖.

Since |Ej | ≤ β, j = 0, 1, . . . , N − 1, we finally arrive at

‖(q∗ + i p∗)− e−i τ H(q + i p)‖ ≤ ε(β τ) ‖q + i p‖, (28)

where
ε(θ) = sup

−θ≤y≤θ
‖K(y)−O(y)‖. (29)

By taking into account that detK(y) ≡ 1, the 2-norm of the 2 × 2 matrix
K(y)−O(y) can be explicitly computed to give

‖K(y)−O(y)‖ =
√

(C(y)− cos(y))2 + (S(y)− sin(y))2

+
√
C(y)2 + S(y)2 − 1,

where

C(y) =
1

2
(K11(y) +K22(y)), S(y) =

1

2
(K12(y)−K21(y)). (30)

Notice that detK(y) ≡ 1 implies

C(y)2 + S(y)2 − 1 =
1

4
(K11(y)−K22(y))2 +

1

4
(K12(y) +K21(y))2

and thus C(y)2 + S(y)2 − 1 ≥ 0 for all real values of y.
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3.2.2 Error estimates for several steps of a splitting method

Ideally, given a positive integer m and θ = β τ > 0, one would like to determine
a sequence (26) of real numbers so that ε(θ) is minimized. The error bound
ε(θ) being small implies that the (2m)th degree polynomial C(y) (resp. the
(2m + 1)th degree polynomial S(y)) is a good polynomial approximation of
cos(y) (resp. sin(y)) for y ∈ [−θ, θ], which implies that increasingly large values
of θ = β τ will require longer sequences of coefficients (that is, larger values
of m), and consequently more computational work. The situation here is in
complete analogy with what happened to Taylor and Chebyshev polynomial
approximations in the previous section.

By applying the methodology exposed in [3] we have determined several
sequences (26) of length 2m + 1 of (near-to-optimal) coefficients for m up to
60. The procedure is described in detail in the Appendix. As shown there, the
task is by no means trivial, and severe technical difficulties arise when trying to
extend the procedure to arbitrarily large values of θ = β τ (and hence arbitrarily
long sequences of coefficients). This is in contrast with Taylor and Chebyshev
approximations.

This drawback can always be circumvented by approximating the solution
z(τ) = O(τ H)z(0) of the system of ordinary differential equations (19) in the
standard step-by-step way. In our case, approximating z(τ) in n substeps of
length

∆τ =
τ

n

simply consists in approximatingO(τ H)z(0) = O(n∆τ H)z(0) = O(∆τ H)nz(0)
by the vector K(∆τ H)nz(0), where K(y) is a 2×2 matrix with polynomial en-
tries (defined in terms of the sequence (26) as before) that should approximate
the rotation matrix O(y) for y ∈ [−β τ

n ,
β τ
n ].

Clearly, the resulting procedure for approximating e−i τ Hv can be written
as an algorithm of the form (25), corresponding to a sequence of coefficients
(with a (2m)-periodic pattern) of length 2nm+ 1. The corresponding error can
be estimated as

‖(q∗ + i p∗)− e−i τ H(q + i p)‖ ≤ ‖K(∆τH)n −O(n∆τH)‖ ‖q + i p‖
≤ ε(n)(β∆τ) ‖q + i p‖, (31)

where
ε(n)(θ) = sup

−θ≤y≤θ
‖K(y)n −O(n y)‖.

Our goal is then to minimize ε(n)(θ). A reasonable requirement is that K(y)n

be bounded for all n. This only happens in general for a certain range of values
of y. One thus defines the stability threshold y∗ as the largest non negative real
number such that K(y)n is bounded independently of n ≥ 1 for all y ∈ (−y∗, y∗)
[2]. In particular, for the sequence (23) corresponding to the application of m
steps of the Strang splitting, the stability threshold is y∗ = 2m. As a matter of
fact, 2m is precisely the maximal stability threshold a sequence of coefficients
(26) of length 2m+ 1 can achieve [13].
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From the analysis carried out in [3], it is possible to show that

‖K(y)n −O(n y)‖ ≤ 2 sin(n(arccos(C(y))− y)/2)

+

√
S(y)2

1− C(y)2
− 1 +

1

2

(
S(y)2

1− C(y)2
− 1

)
,

provided that y ∈ [−y∗, y∗]. This implies that, if β∆τ ≤ y∗, then

‖K(∆τH)n −O(n∆τH)‖ ≤ sup
−β∆τ≤y≤β∆τ

‖K(y)n −O(n y)‖ = ε(n)(β∆τ)

≤ nµ(β∆τ) + ν(β∆τ), (32)

where

µ(θ) = sup
−θ≤y≤θ

| arccos(C(y))− y|, (33)

ν(θ) = sup
−θ≤y≤θ

√
S(y)2

1− C(y)2
− 1 +

1

2

(
S(y)2

1− C(y)2
− 1

)
. (34)

As mentioned before, we have determined several optimized splitting meth-
ods of m stages (determined by a sequence of coefficients (26) of length 2m+1)
for m up to 60. The relevant parameters of such splitting methods are collected

in Table 1. In this table, M
(γ)
m refers to a method of m stages, with error coef-

ficients ε(θ), µ(θ), ν(θ) optimized for θ = γm. For instance, method M
(1.3)
60 can

be used to approximate e−iτ Hv with an error bounded (according to (28) and
Table 1) by 1.2 × 10−9‖v‖ provided that τ ≤ 78/β. Furthermore, e−iτ Hv can
be approximated by applying n substeps of length ∆τ = τ/n ≤ ∆τmax := 78/β

of method M
(1.3)
60 with an error bounded (according to (32)) by

(7.8n× 10−11 + 1.2× 10−9)‖v‖.

In some cases two methods with the same values of m and γ = θ/m have
been collected, in which case they are labeled a and b. For instance, methods

M
(1.4)a
60 and M

(1.4)b
60 are both designed to approximate e−iτ Hv with n substeps

of length ∆τ = τ/n ≤ ∆τmax := 84/β of the method. However, they differ in
the actual error estimate (32): in the first case, the error is bounded (provided
that β|τ | ≤ 84n) by (2.4n×10−8 + 7.4×10−8)‖v‖, while the second one admits
the error estimate (3.7n × 10−9 + 2.6 × 10−6)‖v‖. This means that method

M
(1.4)a
60 will be more efficient if β|τ | ≤ 10452, and the opposite otherwise.

Thus, given the upper bound β of the spectral radius of H and the target
time-step τ , if one wants to approximate e−i τ Hv by applying n substeps of

method M
(1.4)a
60 , one should choose the smallest positive integer n such that

τ

n
≤ ∆τmax :=

84

β
, that is, n = Ceiling[τβ/84].

For instance, suppose the target time-step τ and the bound β are such that

τβ = 1000. Then, clearly, n = 12, so that 12 substeps of scheme M
(1.4)a
60 have

13



to be applied with ∆τ = 1000/(12β) ' 83.3/β to achieve the target time-
step τ . In this way one gets an approximation with estimated error of size
3.62 × 10−7 ‖v‖ with a computational work (2nm = 2 × 12 × 60 = 1440 real
matrix-vector products of the form Hv) comparable to the use of a Chebyshev
polynomial approximation of degree 720. In contrast, to guarantee a similar
precision with Chebyshev, a polynomial of degree at least 1135 is required, since
this is the minimum value of m such that εCm(1000) ‖v‖ ≤ 3.62× 10−7 ‖v‖, with
εCm(θ) given in (16).

It is worth remarking the error coefficients for Strang splitting method (23)
with the same value of γ = θ/m = 1.4 (also collected in Table 1) are much

larger than for methods M
(1.4)a
60 and M

(1.4)b
60 .

3.2.3 Error estimates for combined splitting methods

Sometimes it is just more efficient to apply a combination of two different
methods instead of n substeps of the same scheme. For instance, suppose that

τβ = 177 and we have an error tolerance of tol=10−7. If we use M
(1.4)a
60

then τβ/84 ' 2.1 so that, according with the previous considerations, method

M
(1.4)a
60 has to be used with n = 3 substeps of size ∆τ = 59/β, much smaller

than the value ∆τmax = 84/β for which the scheme has been designed. This
would result in an approximation fulfilling the required error tolerance obtained
with 360 real matrix-vector products of the form Hv. A better strategy would

be the following: apply two substeps of scheme M
(1.4)a
60 with ∆τmax = 84/β

to approximate w = e−i 2∆τmax Hv and then approximating e−i (τ−2∆τmax)Hw
by using some other method with less stages. More generally, we take n =
Floor[τβ/84] substeps of length ∆τmax = 84/β to get w = e−i n∆τmax Hv and
then we approximate e−i (τ−n∆τmax)Hw with another method of Table 1 involv-
ing less stages.

To decide which method has to be used for this last substep, we need
an error estimate for the approximation obtained with such a combination of
two methods. Assume that we apply n substeps of length ∆̂τ of a method
characterized by a 2 × 2 matrix K̂(y) with polynomial entries, followed by
a step of length ∆τ of a method characterized by the matrix K(y), where

τ = n∆̂τ + ∆τ . From the preceding considerations, it is enough to estimate
‖K(∆τ H)K̂(∆̂τ H)n − O(τ H)‖. This can be done in terms of the functions
µ̂(θ), ν̂(θ) associated to K̂(y) as defined in subsection 3.2.2, and the error func-
tion ε(θ) associated to K(θ) as in subsection 3.2.1, together with the following
function associated to K(y):

δ(θ) = sup
−θ≤y≤θ

‖K(y)‖ − 1. (35)

Indeed, one obtains the following error estimate:

‖K(∆τ H)K̂(∆̂τ H)n −O(τ H)‖ ≤ ‖K(∆τ H)− e−i∆τH‖ ‖O(n∆̂τH)‖

+ ‖K(∆τ H)‖ ‖K̂(∆̂τ H)n −O(n∆̂τH)‖

≤ ε(∆τβ) + (1 + δ(∆τβ))(n µ̂(∆̂τ β) + ν̂(∆̂τ β)).
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Since, as it can be noticed in Table 1, δ(θ) ' ε(θ)� 1, then we can take simply

‖K(∆τ H)K̂(∆̂τ H)n −O(τ H)‖ . ε(∆τ β) + n µ̂(∆̂τ β) + ν̂(∆̂τ β). (36)

It is worth remarking that such an approximation will require 2(nm̂+m)+1 real
matrix-vector products of the form Hv, and thus is equivalent in complexity to
the application of a (Chebyshev or Taylor) polynomial approximation of degree
nm̂+m.

4 The final algorithm

Once a set of symplectic splitting methods constructed for providing approxi-
mations under different conditions are available (methods collected in Table 1)
we still have to design a strategy to select the most appropriate scheme or com-
bination of schemes to approximate e−i τ Hv with the desired accuracy and a as
small as possible computational cost.

The user has to provide the values for Emin and Emax, a subprogram to
compute the product Hv for a given real vector v, the target time-step τ and
the desired error tolerance tol. The procedure then implements the shifting
(7), computes the value of β and determines the normalized Hamiltonian H.

Next, the algorithm determines the most efficient method (or composition
of methods) among the list of available schemes which provides the desired
result: it chooses the cheapest method with error bounds below such tolerance
and, if several methods with the same computational cost (same value of m)
satisfy this condition, the algorithm chooses the scheme with the smallest error
bound. This can be achieved if one starts the search from the methods with the
smallest value of m and, for each value of m, proceeds by decreasing accuracy,
i.e. by increasing the value of θ = β∆τmax. For a given value of β τ and tol the
algorithm checks for each method if β τ ≤ θ and, if this condition is satisfied,
then it examines if ε(θ) <tol. This procedure corresponds to the sequence of
methods collected in Table 1 from top to bottom.

When applying our algorithm in the context of the time integration of the
Schrödinger equation with Hamiltonian operators that changes (slowly) with
time, βτ will be typically relatively small, and some of the methods from the ta-
ble will satisfy both conditions for β τ and tol. However, for other applications
(in particular when solving the Schrödinger equation with time-independent
Hamiltonian operators), it may happen that none of the methods from the ta-
ble satisfy both conditions for β τ and tol. Then the time integration is split,
i.e. β τ is divided and a composition of one or several methods is used instead.

Due to the high performance of the methods with the largest number of
stages (in this case 60) the algorithm examines the cost of n steps for the six
60-stage methods where n = Floor[β τ/∆τmaxβ] and the last step is carried
using one method from the list of methods. It chooses the cheapest methods
with the smaller error bound among the composition of methods which provide
the desired accuracy.

In this way, if we denote by K
(γ)
m the matrix associated to method M

(γ)
m ,
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θ =

M
(θ/m)
m m β∆τmax y∗/m ε(θ) µ(θ) ν(θ) δ(θ)

M
(0.5)
10 10 5 0.63 3.6× 10−8 8.7× 10−11 9.8× 10−8 3.6× 10−8

M
(0.9)
10 10 9 0.94 3.4× 10−5 2.9× 10−5 1.1× 10−5 6.0× 10−6

M
(0.6)
20 20 12 0.79 1.6× 10−13 1.4× 10−13 5.8× 10−14 2.5× 10−14

M
(1)
20 20 20 1.1 4.1× 10−7 1.8× 10−8 4.8× 10−7 4.0× 10−7

M
(0.75)
30 30 22.5 0.84 8.1× 10−15 3.3× 10−16 1.5× 10−14 7.9× 10−15

M
(1)
30 30 30 1.0 4.1× 10−10 1.9× 10−10 3.1× 10−10 2.6× 10−10

M
(1.3)
30 30 39 1.36 2.3× 10−5 5.2× 10−6 2.2× 10−5 2.0× 10−5

M
(1)
40 40 40 1.1 1.8× 10−12 4.9× 10−14 2.4× 10−12 1.8× 10−12

M
(1.2)
40 40 48 1.26 2.1× 10−8 2.1× 10−8 5.3× 10−10 4.7× 10−10

M
(1.4)
40 40 56 1.48 1.48× 10−5 4.0× 10−6 1.7× 10−5 1.7× 10−5

M
(1)
50 50 50 1.07 4.5× 10−15 4.5× 10−15 2.0× 10−17 1.8× 10−17

M
(1.1)
50 50 55 1.13 4.5× 10−13 4.2× 10−13 4.1× 10−14 3.5× 10−14

M
(1.2)
50 50 60 1.26 5.4× 10−11 2.7× 10−11 3.8× 10−11 3.4× 10−11

M
(1.3)a
50 50 65 1.32 1.2× 10−8 1.2× 10−8 8.3× 10−10 7.6× 10−10

M
(1.3)b
50 50 65 1.32 5.9× 10−7 9.5× 10−11 6.1× 10−7 5.9× 10−7

M
(1.1)
60 60 66 1.15 7.2× 10−15 7.2× 10−15 2.6× 10−17 2.2× 10−17

M
(1.2)a
60 60 72 1.3 1.5× 10−12 1.1× 10−12 8.3× 10−13 7.5× 10−13

M
(1.2)b
60 60 72 1.26 4.2× 10−11 6.5× 10−14 4.6× 10−11 4.2× 10−11

M
(1.3)
60 60 78 1.36 1.2× 10−9 7.8× 10−11 1.2× 10−9 1.2× 10−9

M
(1.4)a
60 60 84 1.41 8.4× 10−8 2.4× 10−8 7.4× 10−8 7.1× 10−8

M
(1.4)b
60 60 84 1.46 2.9× 10−6 3.7× 10−9 2.9× 10−6 2.9× 10−6

Strang 1 1 2 1.8× 10−1 4.7× 10−2 1.5× 10−1 1.3× 10−1

Strang 1 1.4 2 5.1× 10−1 1.5× 10−1 4.0× 10−1 4.0× 10−1

Strang 1 1.9 2 1.34862 0.606472 2.4894 1.1746

Table 1: Relevant parameters of several symplectic splitting methods especially
designed to approximate e−i τ Hv with one or more substeps of scaled length
θ/m = β∆τ/m. Here y∗ stands for the stability threshold and ε(θ), µ(θ), ν(θ),
and δ(θ) (for θ = β∆τmax) are the coefficients (appearing in the error estimates
obtained in Subsection 3.2) given in (29), (32), and (35) respectively.
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then the resulting splitting method corresponds to the composition

K(γ2)
m (∆τβ)

(
K̂

(γ1)
60 (∆̂τβ)

)n1

, (37)

where the algorithm chooses the methods (labelled by γ1, γ2,m), the time steps,

τ, ∆̂τ , and the value of n1, where n1 = 0 if the method uses just one step. If
n1 > 0 the error bound is given by (36) while for n1 = 0 the error bound is just
ε(τ β).

This strategy has been implemented as a Fortran code which is freely avail-
able for download at the website [28], together with some notes and examples
illustrating the whole procedure.

In order to compare the efficiency of the resulting algorithm with the poly-
nomial approximations based in Taylor and Chebyshev with the error estimates
collected in Table 1 we have represented in Figure 1 the computational work
(equivalent to a polynomial approximation of degree m) required for different
tolerances and values of βτ . Diamonds, squares and circles correspond to the
error tolerances 10−4, 2 · 10−7 and 10−11, respectively, obtained with one or
several steps of schemes in Table 1. Notice that our algorithm based on sym-
plectic splitting methods provide better accuracy with a considerably reduced
computational effort.

Some comments are in order here. First, if the present algorithm to compute
e−iτHv is used in the context of the time integration of the Schrödinger equation
with a time-dependent Hamiltonian, as outlined in the Introduction, the value of
τ = tk+1−tk needs to be relatively small. Otherwise the Magnus approximation
may not be sufficiently accurate. In that case we suggest to choose τ in such
a way that βτ ≤ 84 (or 78 or 72, depending on the required accuracy in the
approximation) so that the algorithm uses only one step for its computation.
For instance, if τ = 160/β and tol=10−6, then the algorithm will use two

substeps of length ∆τ = τ/2 of the method M
(1.4)a
60 with the same matrix Hk

to advance the solution of (3) from time t = tk−1 to t = tk. However, the
same computational effort and precision for the evaluation of the exponentials
will result if one halves the length of the time-step, while the error associated
to the Magnus approximation will be smaller in that case (about four times
smaller in the case of the first order Magnus approximation). Second, if the
space discretization has an increasingly high resolution, then the dimension of
the resulting matrix H increases accordingly and βτ may take large values. Our
algorithm has also been designed to cover this situation, as the examples in the
next section illustrate.

5 Numerical examples

Next we apply the algorithm based on symplectic splitting methods presented in
section 3 to two different examples and compare its main features with Cheby-
shev and Taylor polynomial approximations. For the first example, previously
considered in [19] to illustrate Chebyshev and Lanczos approximations, we pro-
vide in addition the codes we have produced to generate the results and figures
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collected here. These can be found at [28]. The second example illustrates the
performance of the methods on a one-dimensional Schrödinger equation with a
smooth potential.

Example 1. The problem consists in computing u(τ) = exp(−iτH̃)v with
v ∈ CN a unitary random vector and the tridiagonal matrix

H̃ =
1

2


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

 ∈ RN×N . (38)

The eigenvalues of H̃ verify 0 ≤ Ek ≤ 2 for all k, so that we can take Emin = 0,
Emax = 2, and thus α = β = 1 in (7). In consequence, the problem reduces to
approximate

e−iατe−iβτHv, where H = H̃ − I. (39)

We take N = 10000 for the numerical experiments, but the results are largely
independent of N (this is so even for the simplest, scalar case N = 1).

Both Chebyshev and Taylor methods have been implemented in such a way
that only real valued matrix-vector products are used (we always separate into
the real and imaginary parts, i.e. Hu = H(q + i p) = Hq + iHp)), so that
Chebyshev requires to store only 7 real vectors instead of 4 complex vectors.

We take as final time τ = 20 and measure the error in energy, the error
in the preservation of unitarity and the tolerance for different values of m, the
degree of the corresponding polynomials. The results are shown in Figure 2
with the following notation: dashed lines for the relative error in energy, solid
lines for the error in unitarity, and dotted lines for the theoretical error bounds
of the approximate solutions.

From the figure it is clear that the theoretical error bounds for the Taylor
method are quite accurate for this example (since the bounds for Emin and
Emax are sharp) and that for the effective time-step τβ considered, the error
is exceedingly large for m below reaching the super linear convergence regime.
This is not the case for the Chebyshev method (notice that the estimate (16)
is valid only for m > τβ) since the coefficients ck of the polynomial (17) do not
grow as much as in Taylor. We also depict the results achieved by the first two

splitting methods with τmaxβ ≥ τβ = 20, M
(1)
20 and M

(0.75)
30 . For these schemes

the corresponding relative error in energy is represented by filled squares, the
error in unitarity by filled circles and the error bounds by crosses.

The relative performance of different numerical integrators is usually tested
by measuring the error of the methods versus their computational cost. How-
ever, the splitting methods we are considering in this work are designed to
achieve a given tolerance, whereas their computational cost is determined through
the error bound estimate. For this reason, we believe it is more appropriate
to measure the cost of the methods for different values of the tolerance. In
particular, we take tol= 10−k, k = 1, 2, . . . , 12 and final integration times
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Figure 2: Different approximations to e−iτβHv, with H given in (38)-(39), v
a random vector, β = 1 and τβ = 20 versus the degree of the polynomials,
m. The figure shows the relative error in energy (dashed lines), the error in
unitarity (solid lines) and error bounds (dotted lines) for Chebyshev and Taylor
methods. The results for the first two splitting methods with βτmax ≥ βτ = 20,

M
(1)
20 and M

(0.75)
30 , are also shown: relative error in energy (filled squares), error

in unitarity (filled squares) and error bounds (crosses).

τ = 20, 50, 100, 200, 500, 1000. Figure 3 shows the results obtained with Cheby-
shev (line with squares) and the algorithm based on splitting schemes (line with
circles) as a function of m. Even when high accuracy is required over long inte-
gration times (the most advantageous situation for Chebyshev approximations),
the new algorithm requires a smaller value of m and therefore less computa-
tional effort. Notice how the algorithm selects the value of m to achieve the
desired tolerance.

Figure 4 shows the corresponding results for the relative error in energy
versus m for the same example. Similar results are obtained for the error
in unitarity or the two-norm error for which the error bounds apply (in this
case one should compute numerically the exact solution and compare with the
approximations obtained for each value of tol).

Example 2 (Pöschl–Teller potential). To illustrate how the methods work
on a more realistic case, we consider the well known one-dimensional Pöschl–
Teller potential, which is an anharmonic quantum potential

V (x) = − a
2

2µ

λ(λ− 1)

cosh2(ax)
,
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Figure 3: Degree m of the polynomials to achieve tolerances tol= 10−k, k =
1, 2, . . . , 12 for different values of βτ (β = 1 for this problem) as determined
by the error bound formulas using the Chebyshev method (squares) and the
algorithm based on splitting methods (circles).

with a > 0, λ > 1. It has been frequently used in polyatomic molecular simu-
lation and is also of interest in supersymmetry, group symmetry, the study of
solitons, etc. [6, 8, 18]. The parameter λ gives the depth of the well, whereas a
is related to the range of the potential. The energies are

Ek = − a
2

2µ
(λ− 1− k)2, with 0 ≤ k ≤ λ− 1.

We take the following values for the parameters (in atomic units, a.u.):
reduced mass µ = 1745 a.u., a = 2, λ = 24.5 (leading to 24 bounded states),
and x ∈ [−5, 5]. Moreover, to apply a pseudo spectral space discretization we
assume periodicity of the potential in this range. The resulting V (x) is thus
continuous and very close to differentiable for all x ∈ R. Table 2 collects the
bounds to the spectral radius (obtained according to (6)) and the corresponding
shifting for the Pöschl–Teller potential when the space interval x ∈ [−5, 5] is
split into N parts and for different values of N . Notice how sensibly Emax

depends on the space discretization.
We take as initial condition a Gaussian function, ψ(x, 0) = σ e−(3x)2

, where
σ is a normalizing constant, so the function and all its derivatives of practical
interest vanish up to round off accuracy at the boundaries. The initial condi-
tions contain part of the continuous spectrum, but this fact is largely irrelevant
due to the smoothness of the periodic potential and wave function.

Suppose that one is interested in solving the corresponding semi discretized
problem in time with the following requirements:

(I) N = 128, τ = 15π, tol= 10−9. In this case τβ = 26.4648.

(II) N = 512, τ = 40π, tol= 10−6. Now τβ = 507.254.
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Figure 4: Same as Figure 3 but replacing the value of the tolerance tol by the
relative error in energy.

N Emin Emax α β

64 −0.65988 0.11583 −0.27202 0.38785

128 −0.65988 0.46333 −0.098275 0.5616

256 −0.65988 1.8533 0.59672 1.2566

512 −0.65988 7.4133 3.3767 4.0366

1024 −0.65988 29.653 14.496 15.156

Table 2: Bounds to the spectral radius and shifting for the Pöschl–Teller po-
tential with the parameters considered in the text, when the space interval
x ∈ [−5, 5] is split into N parts.

We have to determine first, of course, the degree m of the polynomial from
the corresponding error bounds (for Taylor the time interval is divided by two
in (I) and by 36 in (II) to avoid exceedingly large round off errors). Table 3
shows the number of matrix-vector products used by each method (in bold) and
the 2-norm error for each method (compared with the exact solution obtained
numerically with very high accuracy). In the first case our algorithm makes

the computations in a single step using M
(1)
30 while in the second case it uses 6

steps of the scheme M
(1.4)a
60 followed by one step of M

(0.5)
10 , i.e. the composition

(37) is now

K
(0.5)
10 (τβ)

(
K̂

(1.4)a
60 (∆̂τβ)

)6

with ∆̂τ = 84/β and τ = 40π − 6 ∆̂τ , and for a total of 370 products. Again,
the algorithm based on symplectic splitting methods is able to produce results
with the required accuracy with less computational effort.
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Taylor Chebyshev Symplectic

τ β = 26.4648
tol = 10−9

104
3.4× 10−12

51
3.7× 10−12

30
4.2× 10−11

τ β = 507.254
tol = 10−6

1836
2.5× 10−8

587
3.4× 10−15

370
4.4× 10−9

Table 3: Number of matrix-vector products (in bold) and actual errors given by
the Taylor, Chebyshev and our algorithm for different τ β and tolerances tol.
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Appendix: Construction of methods

We next describe the algorithm used to determine the coefficients (26) of length
2m+ 1 for given m and θ ∈ (0, 2m).

Since all the error estimates in Subsection 3.2 depend exclusively on the even
polynomial (of degree 2m) C(y) and the odd polynomial (of degree 2m+1) S(y)
given in (30), we first try to determine an appropriate pair of such polynomials
satisfying the necessary conditions C(0) = 1 and C(x)2 + S(x)2 − 1 > 0 (for
all x ∈ R). Such pair of polynomials is uniquely determined by a polynomial
P (y) = C(y) + S(y) of degree 2m+ 1 satisfying

P (0) = 1,
1

2
(P (y)2 + P (−y)2)− 1 ≥ 0. (40)

Once an appropriate polynomial P (y) = C(y) + S(y) satisfying (40) is cho-
sen, there is only a finite number of corresponding sequences (26), which can
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be effectively determined [2]. Since all of them share the same error estimates,
we choose among them a sequence that minimizes

m+1∑
j=1

|aj |+
m∑
j=1

|bj |.

We next focus on the effective construction of the polynomial P (y) = C(y)+
S(y) of degree 2m+ 1.

On the one hand, in order that the expression
√
C(y)2 + S(y)2 − 1 featuring

in the error estimate (29) be small in the interval y ∈ [−θ, θ],

sup
−θ≤y≤θ

| cos(y + e(y)) + sin(y + e(y))− P (y)| (41)

should be small for some real valued function e(y). On the other hand, mini-
mizing √

(C(y)− cos(y))2 + (S(y)− sin(y))2)

in the interval y ∈ [−θ, θ] is, provided that (41) is small enough, essentially
equivalent to minimizing

sup
−θ≤y≤θ

|e(y)|. (42)

To reduce the complexity of the final algorithm for determining the polynomial
P (y), we will try to minimize instead an alternative norm of e(y) that we
introduce next. First observe that if

e(y) = ê0 +
∑
j≥1

êj Tj(y/θ) (43)

is the Chebyshev series expansion of the function e(y), then

sup
−θ≤y≤θ

|e(y)| ≤
∑
j≥0

|êj |. (44)

This suggests that the right-hand side of (44) may be a good alternative to the
supremum norm for sufficiently smooth functions e(y). For practical consider-
ations, we will minimize instead the following alternative norm of the function
e(y)

‖e‖θ ≡
√∑

j≥0

(êj)2. (45)

Now, to determine the polynomial P (y) = C(y) + S(y) of degree 2m + 1,
we consider, for a given odd integer l such that m + 1 ≤ l ≤ 2m, a given set
of nodes y1, . . . , yl symmetrically placed in the interval [−θ, θ], and a given odd
polynomial e(y) of degree l−2, the polynomial P (y) of degree 2l−1 interpolating
in the Hermite sense the function cos(y + e(y)) + sin(y + e(y)) for the nodes
y1, . . . , yl. In particular, this implies that P (0) = 1 and

C(y)2 + S(y)2 − 1 =
1

2
(P (y)2 + P (−y)2)− 1 = V (y)W (y)2 (46)
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where W (y) = (y − y1) · · · (y − yl), and V (y) is an even polynomial of degree
4m − 2l + 2. Thus, P (y) satisfies the necessary condition (40) if and only if
V (y) ≥ 0 for all y.

Notice that the interpolation error (41) admits an upper bound of the form

sup
−θ≤y≤θ

| cos(y + e(y)) + sin(y + e(y))− P (y)| ≤ η

(2l)!
sup
−θ≤y≤θ

W (y)2, (47)

where η > 0 is an upper bound of the (absolute value of) the (2l)th derivative
of the function cos(y + e(y)) + sin(y + e(y)) in the interval y ∈ [−θ, θ].

For a prescribed set of nodes y1, . . . , yl, we restrict the choice of the odd
polynomial e(y) (of degree l− 2) so that the Hermite interpolating polynomial
P (y) is of degree 2m+ 1 (which introduces 2(l−m)− 2 non-linear constraints
on the non-zero coefficients ê1, ê3, . . . , êl of the polynomial e(y) given by (43)),
and determine e(y) by minimizing the norm ‖e‖θ for that restricted set of odd
polynomials e(y) of degree l − 2. This produces a polynomial P (y) for each
choice of the set of nodes y1, . . . , yl. It then remains to choose, for a prescribed
positive odd integer l, such a set of nodes y1, . . . , yl.

The error estimate (47) suggests that a good choice for the interpolating
nodes {y1, . . . , yl} may be given by the zeros of the Chebyshev polynomial
Tl(y/θ) of degree l, which corresponds to minimizing the supremum norm (in the
interval [−θ, θ]) of the polynomial W (y). Notice that minimizing the alternative
norm ‖W‖θ also gives rise to the same set of nodes. It then only remains, for
given odd positive number 2m+1 and for given θ > 0, to determine the number
l of interpolating nodes, that should satisfy m+ 1 ≤ l ≤ 2m. If l is too close to
2m, then, very few degrees of freedom are left to minimize ‖e‖θ, and if l is too
close to m + 1, then the Hermite interpolating error (41) is too large, causing
the norm of the function C(y)2 +S(y)2− 1 not being small enough, in addition
to V (y) in (46) typically not being positive. We thus proceed by determining
P (y) = C(y) + S(y) for different values of l close to (3m+ 3)/2, and choosing,
among those satisfying V (y) ≥ 0, one having the best error coefficient ε(θ)
defined in (29).

Unfortunately, choosing the interpolating nodes {y1, . . . , yl} as the zeros of
the Chebyshev polynomial Tl(y/θ) of degree l typically results in a polynomial
P (y) = C(y) + S(y) that does not satisfy the stability condition

|C(y)| ≤ 1, y ∈ [−θ, θ], (48)

so that the error coefficients µ(θ), ν(θ) are not well defined, and thus the re-
sulting splitting method cannot be reliably used in a step-by-step manner for
large values of βτ . In order to produce splitting methods satisfying that sta-
bility condition for given θ, we proceed iteratively to choose the interpolat-
ing nodes {y1, . . . , yl} and the corresponding polynomial P (y) as follows: As
a first approximation, we require the set of nodes {y1, . . . , yl} to contain the
set {jπ : j ∈ Z, |jπ| ≤ θ} and determine the remaining nodes by mini-
mizing the norm ‖W‖θ of W (y) = (y − y1) · · · (y − yl). Once the polynomial
P (y) = C(y) + S(y) is determined for that set of nodes {y1, . . . , yl}, we com-
pute the set of zeros of C ′(y)) = 0 that are included in the interval [−θ, θ] (that
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are typically close to {jπ : j ∈ Z, |jπ| ≤ θ}), and determine the remaining
nodes by minimizing the norm ‖W‖θ of W (y) = (y− y1) · · · (y− yl). Successive
iteration of this process gives a sequence of polynomials P (y) = C(y) + S(y)
that converge to a polynomial satisfying the stability condition (48).

As an example, we have obtained the method M
(1.4)a
60 in Table 1 by following

this procedure for m = 60, θ = 84, and l = 97, which has produced a splitting
methods with sequence of coefficients (26) plotted in Figure 5.

Figure 5: Graphical representation of sequence (a1, b1, a2, b2, . . . , a60, b60, a61)

of method M
(1.4)a
60 in Table 1, obtained with θ = 84 and l = 97.
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