
Mediterr. J. Math.           (2021) 18:53 

https://doi.org/10.1007/s00009-020-01681-6
c© Springer Nature Switzerland AG 2021

A Note on the Baker–Campbell–Hausdorff
Series in Terms of Right-Nested
Commutators

Ana Arnal , Fernando Casas and Cristina Chiralt

Abstract. We get compact expressions for the Baker–Campbell–Hausdorff
series Z = log(eX eY ) in terms of right-nested commutators. The reduc-
tion in the number of terms originates from two facts: (i) we use as a
starting point an explicit expression directly involving independent com-
mutators and (ii) we derive a complete set of identities arising among
right-nested commutators. The procedure allows us to obtain the series
with fewer terms than when expressed in the classical Hall basis at least
up to terms of grade 10.
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1. Introduction

Exponentials of non-commuting operators appear in many areas of physics
and mathematics, ranging from quantum mechanics to the theory of Lie
groups and Lie algebras to the numerical analysis of differential equations. It
is then natural to consider products of such exponentials and how to express
such products as the exponential of a new operator. This of course is closely
related with the celebrated Baker–Campbell–Hausdorff theorem [5].

In the most basic algebraic setting, one considers the associative algebra
K〈X,Y 〉 of formal power series in the non-commuting variables X and Y over
a field K of characteristic zero. Then, eX eY = eΦ(X,Y ), with:

Φ(X,Y ) = log(eX eY ) =
∑

k≥1

(−1)k−1

k
(eXeY − 1)k

=
∑

k≥1

(−1)k−1

k

(
∑

p+q>0

XpY q

p!q!

)k
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=
∑

k≥1

(−1)k−1

k

∑ Xp1Y q1 . . . XpkY qk

p1! q1! . . . pk! qk!
, (1)

where, in the last expression, the inner summation extends over all non-
negative integers p1, q1, . . . , pk, qk for which pi + qi > 0 (i = 1, 2, . . . , k). The
first terms read explicitly:

Φ = (X + Y + XY +
1

2
X2 +

1

2
Y 2 + · · · ) − 1

2
(XY + Y X + X2 + Y 2 + · · · ) + · · ·

= X + Y +
1

2
(XY − Y X) + · · · = X + Y +

1

2
[X,Y ] + · · ·

The Baker–Campbell–Hausdorff (BCH) theorem states that Φ(X,Y ) in (1)
can be expressed as:

Φ(X,Y ) = X + Y +
∑

m≥2

Φm(X,Y ), (2)

where Φm(X,Y ) is a homogeneous Lie polynomial in X and Y of degree m,
i.e., a linear combination of commutators of the form [V1, [V2, . . . , [Vm−1, Vm]
. . .]] with Vi ∈ {X,Y } for 1 ≤ i ≤ m, the coefficients being rational constants.
The formal power series (2) is called the Baker–Campbell–Hausdorff series,
and plays a fundamental role not only in the theory of Lie groups and Lie
algebras [5], but also in linear differential equations, control theory, quantum
and statistical mechanics, and numerical analysis (see, e.g., [4,25–28]).

An explicit expression for Φn in the BCH series was provided by Dynkin
[9,11] in the form:

Φm(X,Y ) =
∑

pi,qi

(−1)m−1

m

[Xp1Y q1 . . . XpmY qm ]
(
∑m

i=1(pi + qi)) p1! q1! . . . pm! qm!
, (3)

where the summation is taken over all non-negative integers p1, q1, . . ., pm,
qm, such that p1 +q1 > 0, . . . , pm +qm > 0 and [Xp1Y q1 . . . XpmY qm ] denotes
the right-nested commutator based on the word Xp1Y q1 . . . XpmY qm . Thus,
for instance:

[XY 2X2Y ] ≡ [XY Y XXY ] ≡ [X, [Y, [Y, [X, [X,Y ]]]]].

Expression (3) can be used in principle to compute Φn in the BCH series
up to any desired order. One should notice, however, that not all the terms
are independent, due to the many existing redundancies. Thus, in particular,
[X3Y 1] = [X1Y 0X2Y 1] = [X, [X, [X,Y ]]]. An additional source of redundan-
cies arises from the Jacobi identity [27]:

[X1, [X2,X3]] + [X2, [X3,X1]] + [X3, [X1,X2]] = 0, (4)

for any three variables X1,X2,X3, and other identities obtained from it. From
this perspective, a procedure allowing to remove at once all the superfluous
terms in (3) is of great value for practical applications.

Although different procedures exist in the literature to construct the
BCH series up to an arbitrary degree in terms of commutators, all of them
have a basic limitation, as is the case with the Dynkin presentation (3): not all
the commutators are independent, and so a rewriting process has to be carried
out to express the results in terms of a basis of the free Lie algebra L(X,Y )
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generated by X and Y . This process, of course, although it can be carried out
by computer algebra systems, requires a good deal of computational time and
memory resources. One of the most efficient algorithms was proposed in [7],
where explicit expressions of Φm up to m = 20 in terms of the classical Hall
and Lyndon bases of L(X,Y ) were obtained with relatively modest computer
requirements. In any event, the fact that no specific bases in the free Lie
algebra have been constructed in which the calculation of the BCH series is
simplified constitutes a major difficulty when dealing with problems where
this series plays a role [6].

Expressing the BCH series in terms of right-nested commutators
presents several advantages, especially when the series is considered in some
particular physical settings. There are problems whose structure leads in
a natural way to consider the BCH series of two operators X, Y satisfy-
ing [Y, [Y, [X,Y ]]] ≡ 0. This happens, in particular, when designing splitting
methods for the numerical integration of classical Hamiltonian systems and
also for the time-dependent Schrödinger equation. Although, in this case, it
is still possible to construct a generalized Hall basis [20], it is much simpler to
identify the non-vanishing terms when using right-nested commutators. On
the other hand, and contrary to Hall–Viennot bases, there is not a straightfor-
ward procedure to construct a set of independent right-nested commutators
generating each homogeneous subspace of L(X,Y ).

Several attempts have been made to directly remove in (3) redundant
terms and, therefore, to express Φm only as a linear combination of indepen-
dent right-nested commutators. Thus, we can mention in particular references
[16,22], where compact expressions up to m = 8 and m = 9, respectively,
have been reported, after identifying highly non-trivial commutators identi-
ties arising when m ≥ 4.

In this work, we show that it is indeed possible to get directly rather
compact expressions for Φm in terms of right-nested commutators without
much computational effort, sometimes with fewer terms than when expressed
in the classical Hall basis. This reduction is still more remarkable if the exist-
ing commutator identities are introduced at any degree. In addition, the
procedure can be easily extended to the BCH series involving any number of
variables:

exp(X1) exp(X2) · · · exp(Xn) = exp
(
Φ(X1,X2, . . . , Xn)

)
. (5)

This can be achieved by considering, instead of the Dynkin presentation (3),
another explicit expression of Φm as a linear combination of products of m
operators X and Y ordered according with the group of permutations. It
turns out that such a formula was also originally obtained by Dynkin and
published in his somehow unnoticed paper [10] (see also the lecture notes by
M. Müger [21] for a translation and a detailed derivation of all the results
contained in the paper).

One could also consider, of course, left-nested commutators instead and
the same results would be still valid with a factor (−1)k, if k is the number
of nested commutators.
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2. The BCH series in terms of permutations

We consider the general case (5), that is:

Φ(X1,X2, . . . , Xn) =
∑

m≥1

Φm(X1, . . . , Xn), (6)

where Φm(X1, . . . , Xn) is a homogeneous polynomial of degree m in the non-
commutative variables X1, . . . , Xn.

Let us denote by ϕn(X1,X2, . . . , Xn) the multilinear part of Φn(X1, . . . ,
Xn), i.e., the part obtained by replacing X2

i by 0 for all i in Φn(X1, . . . , Xn).
Then, one has the following remarkable result (see, e.g., [19]):

Proposition 1. It holds that:

Φm(X1, . . . , Xn) =
∑

i1+···+in=m
ij≥0

1
i1! · · · in!

ϕm(X1, . . . , X1︸ ︷︷ ︸
i1

, . . . , Xn, . . . , Xn︸ ︷︷ ︸
in

).

(7)

As far as we know, the first proof of Proposition 1 is due to Dynkin
[10]. Later on, it was shown that the notion of Eulerian idempotent leads to
a shorter proof [6,19]. The explicit expression of ϕn(X1,X2, . . . , Xn) can be
obtained as follows [19]. Since we are only interested in the multilinear part
of Φn, we have to replace:

exp(X1) exp(X2) · · · exp(Xn)

by

(1 + X1)(1 + X2) · · · (1 + Xn),

and analyze log
(
(1 + X1)(1 + X2) · · · (1 + Xn)

)
, or more specifically, its mul-

tilinear part. In other words, we have to deal with log(1 + Z), where:

Z =
∑

i

Xi +
∑

i<j

XiXj +
∑

i<j<k

XiXjXk + · · · + X1X2 · · · Xn.

It is then clear that ϕn is of the form:

ϕn(X1,X2, . . . , Xn) =
∑

σ∈Sn

cσ Xσ(1)Xσ(2) · · · Xσ(n), (8)

where the sum is extended over all permutations σ of {1, 2, . . . , n}. The coef-
ficients cσ in (8) can be obtained by analyzing the contribution coming from
each power Zk in the expansion log(1+Z) = Z − Z2

2 + · · ·+ (−1)k−1

k Zk + · · · .
The situation is similar to the computation of the explicit expression for the
Magnus expansion as carried out, in particular, in [26]: it turns out that:

cσ =
∑

i1+···+im=n
σ∈S(i1,...,im)

(−1)m−1

m
,

where the sum is extended over all ordered partitions i1 + · · · + im = n of n,
such that σ ∈ S(i1, . . . , im), with:
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S(i1, . . . , im) = {σ ∈ Sn |σ(j)

< σ(j + 1) for all j �= i1 + · · · + i�, � = 1, . . . , m − 1},

and Sn denotes the permutation group. A straightforward computation shows
that this number is

(
n−dσ−1
m−1−dσ

)
, where dσ is the number of descents in σ. We

recall that σ ∈ Sn has an ascent in i if σ(i) < σ(i + 1), i = 1, . . . , n − 1 and
it has a descent in i if σ(i) > σ(i + 1).

In this way, one arrives at [19,26]:

cσ =
n∑

m=dσ+1

(−1)m−1

m

(
n − dσ − 1
m − 1 − dσ

)
=

(−1)dσ

n

1(
n−1
dσ

) ,

and finally:

ϕn(X1,X2, . . . Xn) =
1
n

∑

σ∈Sn

(−1)dσ
1(

n−1
dσ

) Xσ(1)Xσ(2) · · · Xσ(n). (9)

At this point, some remarks are in order:

• The existing relationship between the multilinear part ϕn with the
Eulerian idempotent can be both ways: either to compute the coeffi-
cients cσ in (8) by applying different descriptions of this object [18,24]
or by providing an explicit combinatorial expression for this Eulerian
idempotent with (9) that allows in particular to characterize its sym-
metries [6].

• Goldberg [12] analyzed the formal power series (5) when n = 2 char-
acterizing the coefficient of the general term Xs1

1 Xs2
2 · · · in terms of

certain polynomials. This result was generalized to an arbitrary n in
[15] (see also [14]). It turns out that the coefficients cσ and the explicit
expression (9) reproduce these previous results.

If we restrict ourselves to the case of two variables X1 ≡ X, X2 ≡ Y ,
then Eq. (7) reads:

Φm(X,Y ) =
∑

i+j=m
i,j≥1

1
i!

1
j!

ϕm(X, . . . , X︸ ︷︷ ︸
i

, Y, . . . , Y︸ ︷︷ ︸
j

), (10)

and, according to Eq. (9), one gets for the first terms:

Φ2(X,Y ) = ϕ2(X,Y ) =
1
2
XY − 1

2
Y X

Φ3(X,Y ) =
1
2

ϕ3(X,X, Y ) +
1
2

ϕ3(X,Y, Y )

=
1
12

XXY − 1
6
XY X +

1
12

XY Y +
1
12

Y XX − 1
6
Y XY +

1
12

Y Y X

Φ4(X,Y ) =
1
6

ϕ4(X,X,X, Y ) +
1
4

ϕ4(X,X, Y, Y ) +
1
6

ϕ4(X,Y, Y, Y )

=
1
24

XXY Y − 1
12

XY XY +
1
12

Y XY X − 1
24

Y Y XX. (11)
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3. The BCH series in terms of commutators

Application of Dynkin–Specht–Wever (DSW) theorem to (9) allows one to
express ϕn(X1, . . . , Xn) in terms of commutators and get an alternative
expression for the homogeneous Lie polynomial Φn. If we define the Lie brack-
eting from right to left by the unique linear map r, such that for any word
w = a1a2 . . . an−1an of length n, one has r(w) = [a1, [a2, . . . , [an−1, an] · · · ]],
the DSW theorem states that for each homogeneous Lie polynomial P of
degree n, it is true that r(P ) = nP [23]. In consequence:

ϕn(X1,X2, . . . , Xn)

=
1
n2

∑

σ∈Sn

(−1)dσ
1(

n−1
dσ

) [Xσ(1), [Xσ(2) · · · [Xσ(n−1),Xσ(n)] · · · ]]. (12)

Notice that, as is the case with (3), not all the commutators (Lie brack-
ets) appearing in (12) are linearly independent, due to antisymmetry and the
Jacobi identity. Thus, if one aims to get an expression in terms of independent
commutators, then a particular basis of the vector subspace spanned by those
commutators in which each generator appears exactly once has to be consid-
ered. If we denote this subspace by Ln(X1, . . . , Xn), then dimLn = (n − 1)!.

Among the possible bases of Ln, the class considered by Dragt & Forest
[8] is particularly appropriate. In forming such a basis, one uses only those
right-nested brackets ending with a particular but otherwise arbitrary vari-
able selected from the collection X1,X2, . . . , Xn. If this variable is chosen as
Xn, then the basis is formed by the right-nested brackets of the form:

[Xk, [Xj , . . . [Xi,Xn] . . .]],

where the indices k, j, . . . i are all possible permutations of {1, 2, . . . n−1}. Of
course, there are n different such bases, depending on the particular ending
operator one selects. What makes this class of bases specially compelling is
the following property. Suppose we have an expression in terms of products
of n distinct operators X1, . . . , Xn which is known to be written as a lin-
ear combination of right-nested commutators in Ln(X1, . . . , Xn). This is the
case, in particular, of ϕn. Suppose all the right-nested commutators ending
with, say, Xn are used as a basis. Then, in this linear combination, the coef-
ficient of the right-nested commutator [Xk, [Xj , . . . [Xi,Xn] . . .]] is precisely
the coefficient of the permutation α = (kj . . . in) in the original expression.

In consequence, if we apply this observation to Eq. (9), we end up with:

ϕn(X1,X2, . . . , Xn)

=
1
n

∑

σ∈Sn−1

(−1)dσ
1(

n−1
dσ

) [Xσ(1), [Xσ(2), · · · , [Xσ(n−1),Xn] · · · ]], (13)

just involving the (n − 1)! permutations of Sn−1. Of course, similar formulas
can be obtained for ϕn if instead of choosing Xn as the last element in
the right-nested commutator of the basis one takes any other element Xj ,
j = 1, . . . , n − 1. In any case, a more compact expression than (12) for ϕn is
obtained in this way, since all the commutators are now independent.
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Table 1. Number of terms in the homogeneous Lie polyno-
mial Φm(X,Y ) in the BCH series for the first values of m,
together with the dimension of Lm(X,Y ). The last line refers
to the symmetric BCH series, Eq. (16)

m 2 3 4 5 6 7 8 9 10

dim Lm(X,Y ) 1 2 3 6 9 18 30 56 99
# terms Hall basis 1 2 1 6 6 18 24 56 86
# terms Lyndon basis 1 2 1 6 5 18 17 55 55
no identities 1 2 1 8 7 32 31 96 97
Grade 4 1 2 1 6 5 24 23 78 78
Grade 6 1 2 1 6 4 18 17 67 65
Compact 1 2 1 6 4 18 13 38 52
Symmetric compact 0 2 0 6 0 18 0 42 0

4. Reducing the number of commutators

Applying formula (13) and taking into account Eq. (10) to the case of two
variables, we get:

Φm(X,Y ) =
∑

i+j=m
i,j≥1

1

i!

1

j!

1

m

∑

σ∈Sm−1

(−1)dσ

(
m−1

dσ

) [Xσ(1), [Xσ(2), · · · , [Xσ(m−1), Y ] · · · ]],

where Xσ(i), i = 1, . . . ,m − 1, can be either X or Y according with the
particular permutation σ considered. In particular, for the first terms, we
have:

Φ2(X,Y ) =
1
2
[X,Y ]

Φ3(X,Y ) =
1
12

[X, [X,Y ]] +
1
6
[X, [Y, Y ]] − 1

12
[Y, [X,Y ]]

Φ4(X,Y ) =
1
24

[X, [X, [Y, Y ]]] − 1
24

[X, [Y, [X,Y ]]] +
1
36

[X, [Y, [Y, Y ]]]

− 1
36

[Y, [X, [Y, Y ]]]. (14)

If we take into account, however, the obvious property [z, z] = 0, then we get
the correct formula for Φm(x, y) up to m = 4 and a much reduced number of
terms in Φm for m ≥ 5 than formula (2) with (3). To substantiate this claim,
we have elaborated the code presented in Appendix A for the computation
of ϕm and the functions Φm(X,Y ). The number of terms in Φm produced
by this code is collected in the fifth line of Table 1 up to m = 10. It is
labelled as “no identities” to emphasize the fact that no existing identities
among commutators have been yet implemented. We include for comparison
the corresponding number of terms of Φm(X,Y ) in the classical Hall (third
line) and Lyndon bases (fourth line) as obtained by applying the procedure
of [7]. For completeness, we also write the dimension of each homogeneous
subspace Lm(X,Y ) of the free Lie algebra L(X,Y ).
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If we incorporate the identity:

[Y, [X, [X,Y ]]] = [X, [Y, [X,Y ]]]

appearing at m = 4 into the procedure, we get the numbers collected in the
line labelled “Grade 4”. It is remarkable that this number agrees with the
one corresponding to the Lyndon basis up to m = 6, whereas Φ8 and even
Φ10 contain a smaller number of terms than in the classical Hall basis.

Whereas no further identities exist at m = 5, the following three appear
at m = 6, namely [22]:

(i) [X,X,X, Y,X, Y ] − 2 [X,Y,X,X,X, Y ] + [Y,X,X,X,X, Y ] = 0,
(ii) [X,X, Y, Y,X, Y ] + 3 [Y,X,X, Y,X, Y ] − 3 [X,Y,X, Y,X, Y ]

− [Y, Y,X,X,X, Y ] = 0,
(iii) [Y, Y,X, Y,X, Y ] − 2 [Y,X, Y, Y,X, Y ] + [X,Y, Y, Y,X, Y ] = 0,

where we have denoted [X,X,X, Y,X, Y ] := [X, [X, [X, [Y, [X,Y ]]]]], etc.,
for simplicity. By incorporating them into the algorithm, we get a further
reduction, as the line labelled “Grade 6” in Table 1 clearly shows.

As a matter of fact, a systematic procedure to generate all the existing
identities at a given m can be designed using tools of linear algebra, and
in particular Gaussian elimination, as is explained in Appendix B (see also
[17]). The algorithm can also be used to construct bases of the homogeneous
subspace Lm(X,Y ) for any m ≥ 1 formed by right-nested commutators in a
quite straightforward manner. For completeness, we have collected all such
existing identities up to m = 10 in the reference [1].

Once the identities have been obtained, to get compact expressions, a
particular basis has to be identified at each m, so that the number of vanish-
ing coefficients of Φm(X,Y ) is as large as possible. This can be done either
by inspection (for small m) or applying the technique proposed in [16]. By
proceeding in this way, we have been able to get rather compact expressions
for Φm, as shown in Table 1 (line labelled “Compact”). The corresponding
explicit expressions can be found in [1]. In the reduction process, a relevant
role is played by the existing symmetries, namely:

Φm(−X,−Y ) = (−1)m Φm(X,Y )

Φm(X,Y ) = (−1)m+1 Φm(Y,X).

5. Further considerations

The above procedure can also be easily generalized to any number of vari-
ables. In particular, from Eqs. (7) and (13), we get for the case of three
variables:

Φ2(x1, x2, x3) =
1
2
[x1, x2] +

1
2
[x1, x3] +

1
2
[x2, x3]

Φ3(x1, x2, x3) =
1
12

[x1, [x1, x2]] +
1
12

[x1, [x1, x3]]
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+
1
3
[x1, [x2, x3]] − 1

12
[x2, [x1, x2]]

−1
6
[x2, [x1, x3]] +

1
12

[x2, [x2, x3]] − 1
12

[x3, [x1, x3]] − 1
12

[x3, [x2, x3]],

(15)

etc. This can be applied to get directly the so-called symmetric BCH formula:

exp(
1
2
X) exp(Y ) exp(

1
2
X) = exp(Ψ(X,Y )) =

∞∑

m=1

Ψm(X,Y ) (16)

of great relevance in the design of time-symmetric splitting and composition
methods (see, e.g., [3,13] and references therein). In this case, it is easy to
show that, in general, Ψm(X,Y ) = 0 when m is even.

Of course, to get compact expressions, we have to apply the same pro-
cedure as before to the corresponding formulas (15) with the obvious replace-
ments x1 → X/2, x2 → Y , x3 → X/2. It is more advantageous, however, to
start with a different expression for (16) involving less terms before applying
the reduction procedure. This can be achieved by connecting Φ(X,Y ) and
exp(Ψ(X,Y )) as follows:

eΨ(X,Y ) = e− X
2 eX eY e

X
2 = e− X

2 eΦ(X,Y ) e
X
2 ,

so that

Ψ(X,Y ) = e
−ad X

2 Φ(X,Y ) =
∞∑

k=0

(−1)k

2kk!
adk

XΦ(X,Y ), (17)

where

adAB = [A,B], adj
AB = [A, adj−1

A B], ad0
AB = B.

If we use the compact expressions for Φm(X,Y ) obtained in the previous sec-
tion, then the number of terms in the corresponding Ψm determined accord-
ing with (17) diminishes considerably. For instance, when m = 9, we get 52
terms instead of 121. By applying the existing identities, this number is fur-
ther reduced to 42. For comparison, Ψ9 in the Hall basis contains 56 terms
[7].

The last line in Table 1 contains the number of terms of Ψm(X,Y ) up
to m = 9, whereas the explicit expressions can also be found at [1].

On the other hand, formula (14) for Φm(X,Y ) can be in fact obtained
when the Magnus expansion is used to construct the formal solution of the
differential equation:

Y ′(t) = A(t)Y (t), Y (0) = I, (18)

when A(t) is defined as:

A(t) = θ(t − 1)X +
(
θ(t) + θ(t − 1)

)
Y,

θ(t) being the step function. As is well known, the solution of (18) can be
written as:

Y (t, 0) = exp Ω(t, 0),
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where Ω is an infinite series:

Ω(t, 0) =
∞∑

m=1

Ωm(t, 0), with Ωm(0, 0) = 0, (19)

whose terms are increasingly complex expressions involving time-ordered inte-
grals of nested commutators of A evaluated at different times. An explicit
expression for Ωm(t, 0), m ≥ 1, in terms of iterated integrals of linear combi-
nations of independent commutators has been obtained in [2], namely:

Ωm(t, 0) =
1
m

∑

σ∈Sm−1

(−1)db
1(

m−1
db

)
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm

[A(tσ(1)), [A(tσ(2)) · · · [A(tσ(m−1)), A(tm)] · · · ]],(20)

where σ and dσ have the same meaning as in (13). Notice that, since
Y (t = 2, 0) = eXeY , then log(eXeY ) = Ω(2, 0), and Ωm(2, 0) as given by
(20) reproduces exactly the expression of Φm(X,Y ) given by (14). This can
be checked order by order.
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A Appendix

The following code in Mathematica implements (perhaps not in the most
efficient way) formula (7):

Next, we compute Φm(X1, . . . , Xn) with the explicit expression (9)
for ϕm in terms of non-commutative products Mm. This is contained in
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PhiMm[m][{X1, . . . , Xn}]:

Then, we express ϕn(X1, . . . , Xn) in terms of commutators, Eq. (13),
and finally Φm by computing PhiCmt[m][{X1, . . . , Xn}]:

The first block defines the commutator (just the linearity property
and the antisymmetry) with the correct format for output if necessary.
Linearity properties in an analogous way should be implemented for the
non-commutative product Mm. The second block defines the basis and the
generic term ϕn(X1, . . . , Xn). Finally, let us remark that since the number
of variables is free, the same code allows one to compute both the BCH
PhiCmt[m][{X,Y }] and the symmetric BCH series, PhiCmt[m][{1

2X,Y, 1
2X}].

B Appendix

The algorithm we have applied to generate the identities among commutators
and a basis of the homogeneous subspace Lm(X,Y ) formed by right-nested
commutators is a generalization of a procedure proposed in [17], and can be
summarized as follows:
For each j = 2, . . . ,m, do:

1. Generate all possible right-nested commutators Ci involving j operators
X and m − j operators Y . For example, with m = 4:

B4 = {[X, [X, [X,Y ]]], [Y, [X, [X,Y ]]], [X, [Y, [X,Y ]]], [Y, [Y, [X,Y ]]]}.

2. Generate the corresponding element 〈Ci〉 in the homogeneous subspace
Um(X,Y ) of the universal enveloping algebra associated with L(X,Y ).
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This is done by expanding each commutator [A,B] = AB − BA. For
example, on the previous list, for C1 = [X, [X, [X,Y ]]]:

< C1 >= XXXY − 3XXY X + 3XY XX − Y XXX.

3. The element 〈Ci〉 is then a linear combination of words Xi1Xi2 · · · Xim
,

where Xij
is either X of Y . The total number of words is

(
m
j

)
. Once all

these words are arranged in a prescribed order, the element commutator
Ci can be identified with the vector (a1, a2, . . . , ap) formed by the linear
combination. Then, C1 would be C1 ≡ (1,−3, 0, 3, 0, 0,−1, 0, 0, 0, 0, 0).

4. Define a matrix A whose rows are formed by these coefficient vectors
and augment it to the right with the m×m identity matrix, forming an
block matrix (A|I). Apply Gauss–Jordan elimination and get the block
matrix (M |P ). For m = 4, we have:

(A|I) =

⎛

⎜⎜⎝

1 −3 0 3 0 0 −1 0 0 0 0 0 1 0 0 0
0 0 −1 0 2 0 0 −2 0 1 0 0 0 1 0 0
0 0 −1 0 2 0 0 −2 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 −3 0 3 −1 0 0 0 1

⎞

⎟⎟⎠

and

(M |P ) =

⎛

⎜⎜⎝

1 −3 0 3 0 0 −1 0 0 0 0 0 1 0 0 0
0 0 1 0 −2 0 0 2 0 −1 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 −3 0 3 −1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

⎞

⎟⎟⎠ .

5. Now, the non-vanishing rows on M give the commutators of the basis.
The identities we want to find out are obtained after making equal to
zero the linear combinations on P · Bn corresponding to the vanishing
rows. In our example, since there is one null row on M we get one Grade
4 identity, we equal to zero the last element on the product P · B4, that
is:

0 = [Y, [X, [X,Y ]]] − [X, [Y, [X,Y ]]].

C Appendix

For completeness, we include in the sequel the explicit compact expression
we have obtained for Φm(X,Y ), m = 1, . . . , 10. Here [Xp1Y q1 . . . XpmY qm ]
denotes the right-nested commutator based on the word Xp1Y q1 . . . XpmY qm .
Thus, in particular:

[Y 2 X4 Y ] ≡ [Y, [Y, [X, [X, [X, [X,Y ]]]]]].
Φ1(X,Y ) = X + Y

Φ2(X,Y ) =
1

2
[X Y ]

Φ3(X,Y ) =
1

12
[X2 Y ] − 1

12
[Y XY ]

Φ4(X,Y ) = − 1

24
[XYXY ]

Φ5(X,Y ) = − 1

720
[X4 Y ] − 1

120
[XYX2Y ] − 1

360
[XY 2XY ] +

1

360
[Y X3Y ]
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+
1

120
[Y 2X2Y ] +

1

720
[Y 3XY ]

Φ6(X,Y ) = − 1

720
[X2Y 2XY ] +

1

240
[XY 2X2Y ] +

1

1440
[XY 3XY ] +

1

1440
[Y X4Y ]

Φ7(X,Y ) =
1

30240
[X6Y ] +

1

5040
[X2Y X3Y ] − 1

10080
[X2Y 2X2Y ]

+
1

10080
[XYX4Y ] +

1

1008
[XYXYX2Y ] +

1

5040
[XYXY 2XY ]

− 1

7560
[XY 2X3Y ] +

1

3360
[XY 3X2Y ] +

1

10080
[XY 4XY ]

− 1

10080
[Y X5Y ] − 1

1260
[Y XY X3Y ] − 1

1680
[Y XY 2X2Y ]

+
1

3360
[Y 2X4Y ] − 1

3360
[Y 2XYX2Y ] − 1

2520
[Y 2XY 2XY ]

+
1

7560
[Y 3X3Y ] +

1

10080
[Y 4X2Y ] − 1

30240
[Y 5XY ]

Φ8(X,Y ) = − 5

24192
[X3Y 3XY ] +

1

2520
[X2Y XY 2XY ] +

1

20160
[X2Y 4XY ]

+
1

15120
[XYX2Y 2XY ] − 1

2016
[XYXY 2X2Y ] − 1

20160
[XYXY 3XY ]

+
1

20160
[XY 2XYX2Y ] − 1

10080
[XY 2XY 2XY ] − 1

60480
[XY 5XY ]

− 1

60480
[Y X6Y ]+

1

20160
[Y X3Y X2Y ]− 1

5040
[Y X2Y X3Y ]+

1

20160
[Y 2X5Y ]

Φ9(X,Y ) = − 1

302400
[X5Y X2Y ] +

1

113400
[X5Y 2X,Y ] − 1

40320
[X4Y 2X2Y ]

− 1

120960
[X4Y 3XY ] +

13

604800
[X3Y 4XY ] +

1

24192
[X2Y X2Y X2Y ]

+
1

30240
[X2Y X2Y 2XY ] − 1

60480
[X2Y XY X3Y ] − 1

20160
[X2Y XY 3XY ]

− 11

604800
[X2Y 5XY ] − 1

151200
[XYX6Y ] − 1

20160
[XYX3Y X2Y ]

− 1

10080
[XYX2Y 2X2Y ] +

1

40320
[XYX2Y 3XY ] +

1

18900
[XYXY 4XY ]

− 1

20160
[XY 2XY 2X2Y ] − 1

17280
[XY 2XY 3XY ] − 1

120960
[XY 4X3Y ]

− 1

302400
[XY 6XY ] +

1

302400
[Y X7Y ] +

1

50400
[Y X4Y X2Y ]

+
1

120960
[Y X4Y 2XY ] +

1

20160
[Y X2Y XY X2Y ] − 1

40320
[Y XY 2X4Y ]

+
1

10080
[Y XY 2XYX2Y ] +

1

30240
[Y XY 2XY 2XY ] +

1

151200
[Y XY 5XY ]

+
1

302400
[Y 2X6Y ] +

1

20160
[Y 2XYX4Y ] − 1

30240
[Y 2XY 2X3Y ]

+
1

60480
[Y 2XY 3X2Y ] − 13

604800
[Y 3X5Y ] − 1

90720
[Y 3X2Y 2XY ]

+
1

120960
[Y 4X4Y ] +

1

453600
[Y 5X3Y ] +

1

302400
[Y 6X2Y ]

+
1

1209600
[Y 7XY ] − 1

1209600
[X8Y ]

Φ10(X, Y ) = − 1

2419200
[X

4
Y X

4
Y ] − 1

604800
[X

4
Y

2
X

3
Y ] +

1

604800
[X

3
Y X

5
Y ]

+
1

151200
[X

3
Y XY X

3
Y ] +

1

604800
[X

3
Y

2
X

4
Y ] +

1

134400
[X

3
Y

2
XY X

2
Y ]

+
1

362880
[X

3
Y

3
X

3
Y ] +

1

134400
[X

3
Y

4
X

2
Y ] − 1

403200
[X

2
Y X

6
Y ]
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− 1

100800
[X

2
Y X

2
Y X

3
Y ] − 1

201600
[X

2
Y XY X

4
Y ] − 1

50400
[X

2
Y XY XY X

2
Y ]

− 1

604800
[X

2
Y XY XY

2
XY ] − 1

302400
[X

2
Y XY

2
X

3
Y ] − 1

80640
[X

2
Y XY

3
X

2
Y ]

− 1

100800
[X

2
Y

2
XY X

3
Y ] − 1

201600
[X

2
Y

2
XY

2
X

2
Y ] +

1

403200
[X

2
Y

3
X

4
Y ]

− 1

75600
[X

2
Y

3
XY X

2
Y ] − 1

362880
[X

2
Y

3
XY

2
XY ] +

1

403200
[X

2
Y

4
X

3
Y ]

− 1

134400
[X

2
Y

5
X

2
Y ] − 1

604800
[X

2
Y

6
XY ] +

1

604800
[XY X

7
Y ]

+
1

40320
[XY X

2
Y X

4
Y ] +

1

67200
[XY X

2
Y XY X

2
Y ] − 1

151200
[XY X

2
Y

2
X

3
Y ]

− 1

50400
[XY XY X

5
Y ] +

1

25200
[XY XY XY X

3
Y ] +

1

25200
[XY XY XY

2
X

2
Y ]

− 1

100800
[XY XY

2
X

4
Y ]− 1

100800
[XY XY

2
XY X

2
Y ]+

1

302400
[XY XY

2
XY

2
XY ]

+
1

75600
[XY XY

3
X

3
Y ] +

1

50400
[XY XY

4
X

2
Y ] +

1

151200
[XY

2
X

6
Y ]

− 1

100800
[XY

2
X

2
Y X

3
Y ] − 1

50400
[XY

2
X

2
Y

2
X

2
Y ] +

1

403200
[XY

2
XY X

4
Y ]

+
1

25200
[XY

2
XY XY X

2
Y ]+

1

151200
[XY

2
XY XY

2
XY ]− 1

43200
[XY

2
XY

2
X

3
Y ]

− 1

67200
[XY

2
XY

3
X

2
Y ] +

1

100800
[XY

2
XY

4
XY ] − 1

75600
[XY

3
XY X

3
Y ]

− 1

302400
[XY

3
XY

2
X

2
Y ] +

13

1209600
[XY

4
X

4
Y ] +

1

75600
[XY

4
XY X

2
Y ]

− 1

60480
[XY

4
XY

2
XY ] − 1

226800
[XY

5
X

3
Y ] +

1

86400
[XY

6
X

2
Y ]

+
1

2419200
[XY

7
XY ].
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