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Abstract. In this work, a splitting strategy is introduced to approximate two-dimensional
rotation motions. Unlike standard approaches based on directional splitting which usually lead to a
wrong angular velocity and then to large error, the splitting studied here turns out to be exact in time.
Combined with spectral methods, the so-obtained numerical method is able to capture the solution to
the associated partial differential equation with a very high accuracy. A complete numerical analysis
of this method is given in this work. Then, the method is used to design highly accurate time
integrators for Vlasov type equations: the Vlasov--Maxwell and the Vlasov-HMF systems. Finally,
several numerical illustrations and comparisons with methods from the literature are discussed.
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1. Introduction. The main goal of this work is to introduce a splitting strategy
to deal with rotation motions and to apply it to construct efficient high-order time
integrators for Vlasov type equations. The splitting is based on the fact that a rotation
of angle \theta can be decomposed into a product of three shear transformations,

\biggl( 
1  - tan \theta /2
0 1

\biggr) \biggl( 
1 0

sin \theta 1

\biggr) \biggl( 
1  - tan \theta /2
0 1

\biggr) 
=

\biggl( 
cos \theta  - sin \theta 
sin \theta cos \theta 

\biggr) 
= e\theta J ,

(1.1)

for \theta \not = k\pi , k \in \BbbZ  \star and where J is the fundamental symplectic matrix

J =

\biggl( 
0  - 1
1 0

\biggr) 
.(1.2)

Note that this decomposition into shear matrices can be derived using formal com-
putations and already has been introduced in the image processing community (see
[25, 28, 1, 30, 11]), in which several approaches have been developed to rotate an
image on a computer screen. Moreover, this approach has also been used to design
numerical methods for Gross--Pitaevskii equations (see [13] and [3, Lemma II.2]) in
which this underlying splitting is used to solve exactly the harmonic oscillator.
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SPLITTING FOR ROTATIONS: APPLICATION TO VLASOV A667

To make the link between (1.1) and the underlying partial differential equation,
we aim to integrate the following two-dimensional transport equation:

\partial tu = Jx \cdot \nabla u, x \in \BbbR 2,(1.3)

with the initial condition u(t = 0, x) = uin(x). The exact solution of (1.3) at time
t is u(t, x) = uin(etJx), which is nothing but the rotation of angle t of the initial
condition uin. When the initial condition is not known analytically or when (1.3) is
a part of a more complicated model, then one only has access to discrete information
of the initial condition and a numerical method is required to approximate (1.3). Our
goal in this work is to introduce a directional splitting inspired by (1.1) which is exact
with respect to the time variable.

Obviously, standard finite differences or finite volumes based methods can be used
to approximate the spatial direction x and coupled to Runge--Kutta strategies in time.
However, this leads to methods which usually suffer from a strong CFL condition on
the time step. Then, semi-Lagrangian methods are preferred, since they are free from
the stability condition but still keep Eulerian accuracy (see [26, 18, 32, 14]). For
(1.3), the feet of the characteristics can be computed exactly and a two-dimensional
interpolation has to be performed to update the numerical unknown. However, high-
dimensional interpolation is known to be nonconservative and it is obviously more
demanding in terms of complexity and time. Then, splitting methods are very com-
petitive since they reduce the problem into very simple one-dimensional linear trans-
port equations which can be solved efficiently with semi-Lagrangian methods (using
high-order or even spectral interpolation). Moreover, in a splitting procedure, the
variable that does not appear in the derivative is just a parameter so that a very sim-
ple parallelization can be performed by distributing the computation on the processors
according to the values of this parameter.

For rotation dynamics, however, the standard splitting strategy (like Strang or
Lie splitting, for example) can induce some error since it involves a wrong rotational
velocity (see [8]). Here, we propose a new splitting which enables us to solve (1.3)
exactly in time (like in [13, 3]). Moreover, when this splitting is coupled with spectral
methods (and under some assumptions detailed in what follows), the so-obtained
method is able to capture to a very high accuracy the exact solution (spectral accuracy
in practice). A complete proof of convergence of the fully discretized numerical method
is performed. We will see that this strategy and some simple extensions turn out to be
very efficient compared to standard methods when applied to the following problems.
First, it enables us to design high-order (in time) methods for the Vlasov--Maxwell
system. Second, when applied to the Vlasov-HMF model in the close-to-equilibrium
regime (see [21]), this splitting turns out to be more efficient than the Strang one.

Concerning the Vlasov--Maxwell solvers, our goal was to improve the method
introduced in [16] in which a splitting into three parts has been proposed. The exact
treatment of the rotation enables us to solve exactly and efficiently the magnetic part
which is then very helpful when designing high-order splitting methods for the full
Vlasov--Maxwell system. The resulting schemes are fourth-order accurate in time and
preserve the Gauss condition exactly. We also use the new splitting to approximate
the solution of the Vlasov-HMF system, for which the close-to-equilibrium dynamics
is driven by the linearized Hamiltonian part (see [21]). For such Hamiltonian, the new
splitting has a good behavior (see [4]) and we compare its efficiency with the standard
Strang splitting by studying perturbations of a nonhomogeneous equilibrium state.

The rest of the paper is organized as follows. First, the method is presented in
the context of the numerical approximation of transport equation of the form (1.3)
and a complete proof of convergence is performed with some numerical illustrations.
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A668 J. BERNIER, F. CASAS, AND N. CROUSEILLES

Then, the Vlasov--Maxwell system is presented and we explain how the new method is
used to design high-order Vlasov--Maxwell solvers. Finally, some numerical results are
given to show the benefit of the new method in the Vlasov context. Note that several
technical details concerning the proofs or analyses can be found as supplementary
material accompanying this paper.

2. Presentation of the method and its numerical analysis. In this section,
we focus on the two-dimensional equation

\partial tu = Jx \cdot \nabla u, x = (x1, x2) \in \BbbR 2,(2.1)

supplemented with an initial condition u(t = 0, x) = uin(x).
We intend to analyze the convergence of a splitting in time based numerical

scheme coupled with a spectral method in space (i.e., in the x-direction). More
precisely, we want to solve (2.1) on [tn, tn+1]; then we want to compute un+1(x), an
approximation of u(tn+1, x1, x2), the solution at time tn+1 = tn+ \delta t (\delta t > 0 being the
time step and n \in \BbbN ) of (2.1) with initial condition uin(x1, x2) = u(tn, x1, x2) at time
tn = n\delta t, n \in \BbbN . To do so, we propose a new splitting in which each step is a shear
transformation.

Let us introduce some notation. For a given 2 \times 2 matrix A, we denote by
exp(\delta tAx \cdot \nabla )un the solution at time tn+1 of\biggl\{ 

\partial tu(t, x) = Ax \cdot \nabla u(t, x), x \in \BbbR 2,
uin(x) = un(x).

(2.2)

Then, from (1.1), we search for a, b \in \BbbR so that the relation

e - 
a
2 x2\partial x1 ebx1\partial x2 e - 

a
2 x2\partial x1un = e\delta tJx\cdot \nabla un(2.3)

holds true, which can be written equivalently as

eA1x\cdot \nabla eA2x\cdot \nabla eA1x\cdot \nabla un = e\delta tJx\cdot \nabla un(2.4)

with

A1 =

\biggl( 
0  - a/2
0 0

\biggr) 
, A2 =

\biggl( 
0 0
b 0

\biggr) 
.(2.5)

Using the method of characteristics, we have for (2.2)

e\delta tAx\cdot \nabla un = un \circ e\delta tA, \delta t \geq 0,

so that (2.4) is nothing but un(eA1eA2eA1x) = un(e\delta tJx). Since A1 and A2 are
nilpotent matrices, their exponential follows readily,

eA1 =

\biggl( 
1  - a/2
0 1

\biggr) 
, eA2 =

\biggl( 
1 0
b 1

\biggr) 
,

and it is clear from (1.1) that the choice a = 2 tan(\delta t/2) and b = sin(\delta t) leads to an
exact splitting in time (and this choice is unique), so that the scheme then is written
as un+1(x) = un(eA1eA2eA1x), with A1 and A2 given by (2.5). Let us remark that
the usual Strang splitting corresponds to a = b = \delta t.

In consequence, now we have to solve shear transformations, which are nothing but
one-dimensional linear advections. We consider here using a pseudospectral method.

To do so, we discretize a square, of size R, centered in 0 (i.e.,
\bigl[ 
 - R

2 ,
R
2

\bigr] 2
) with a regular
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SPLITTING FOR ROTATIONS: APPLICATION TO VLASOV A669

grid with N \in \BbbN \ast points per direction. Its stepsize is h = R/N . We denote this grid
by \BbbG 2, with

\BbbG = h

s
 - 
\biggl\lfloor 
N  - 1

2

\biggr\rfloor 
,

\biggl\lfloor 
N

2

\biggr\rfloor {
.(2.6)

Then, we define the discrete partial Fourier transforms

\scrF 1 :

\left\{   \BbbC 
\BbbG 2 \rightarrow \BbbC \widehat \BbbG \times \BbbG ,

\bfitu \mapsto \rightarrow h
\sum 
g1\in \BbbG 

\bfitu g1,g2 e
 - ig1\xi 1 and \scrF 2 :

\left\{   \BbbC 
\BbbG 2 \rightarrow \BbbC \BbbG \times \widehat \BbbG ,
\bfitu \mapsto \rightarrow h

\sum 
g2\in \BbbG 

\bfitu g1,g2 e
 - ig2\xi 2 ,

where \widehat \BbbG = \eta 
q
 - 
\bigl\lfloor 
N - 1
2

\bigr\rfloor 
,
\bigl\lfloor 
N
2

\bigr\rfloor y
stands for the set of discrete frequencies with \eta = 2\pi /R.

Now, we want to solve the continuous shear transformations (\alpha \in \BbbR ),

\partial tu = \alpha x2\partial x1
u, \partial tu = \alpha x1\partial x2

u,(2.7)

which are the basic building blocks of the splitting presented above. These shear
transformations are particularly simple to solve and we shall use a pseudospectral
method. Then, for any parameter \alpha \in \BbbR , we introduce two pseudospectral shear
transformations,

\scrS \alpha 
1 :

\biggl\{ 
\BbbC \BbbG 2 \rightarrow \BbbC \BbbG 2

,
\bfitu \mapsto \rightarrow \scrF  - 1

1

\bigl[ 
ei\alpha \xi 1g2\scrF 1 \bfitu 

\bigr] (2.8)

and

\scrS \alpha 
2 :

\biggl\{ 
\BbbC \BbbG 2 \rightarrow \BbbC \BbbG 2

,
\bfitu \mapsto \rightarrow \scrF  - 1

2

\bigl[ 
ei\alpha \xi 2g1\scrF 2 \bfitu 

\bigr] 
.

(2.9)

Remark 2.1. If N is even, we have to pay attention to the mode N
2 associated to

the frequency \eta N
2 . Indeed, we can easily verify that \scrS \alpha 

i \BbbR \BbbG 2 \subset \BbbR \BbbG 2

(for i = 1, 2) if and
only if N is odd or \alpha \in \BbbZ .

Finally, the numerical solution (\bfitu n)n\in \BbbN of the numerical schemes we consider are
defined by (for \delta t \not = k\pi , k \in \BbbZ  \star )

\bfitu n = (\scrL \delta t)
n uin| \BbbG 2 :=

\Bigl( 
\scrS \delta t
2 \scrS  - \delta t

1

\Bigr) n

uin| \BbbG 2 (Lie),

\bfitu n = (\scrT \delta t)n uin| \BbbG 2 :=
\Bigl( 
\scrS  - \delta t/2
1 \scrS \delta t

2 \scrS  - \delta t/2
1

\Bigr) n

uin| \BbbG 2 (Strang),

\bfitu n = (\scrM \delta t)
n uin| \BbbG 2 :=

\Bigl( 
\scrS  - tan(\delta t/2)
1 \scrS sin(\delta t)

2 \scrS  - tan(\delta t/2)
1

\Bigr) n

uin| \BbbG 2 (New),

(2.10)

where uin| \BbbG 2 is the evaluation of the initial condition uin on the grid \BbbG 2. The rest of

this section performs a numerical analysis of the splittings defined in (2.10).

2.1. Numerical analysis. We define some associated discrete Lebesgue norms.
They are defined for \bfitu \in \BbbC \BbbG 2

by

\| \bfitu \| 2L2(\BbbG 2) = h2
\sum 
g\in \BbbG 2

| \bfitu g | 2 and \| \bfitu \| L\infty (\BbbG 2) = max
g\in \BbbG 2

| \bfitu g | .

We also use the Schwartz space S (\BbbR 2) and introduce a scale of spaces, denoted
(Xs)s\geq 0, defined by

Xs =

\biggl\{ 
u \in L2(\BbbR 2), \| u\| 2Xs :=

\int 
\langle x\rangle 2s| u(x)| 2dx+

\int 
\langle \xi \rangle 2s| Fu(\xi )| 2d\xi <\infty 

\biggr\} 
,
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A670 J. BERNIER, F. CASAS, AND N. CROUSEILLES

where \langle x\rangle :=
\sqrt{} 
1 + | x| 2 and Fu denotes the Fourier transform of u. This scale of

spaces is well designed to estimate the consistency error of the pseudospectral method
since it controls both the localization and the smoothness of the functions.

2.1.1. Consistency. First, we prove that the pseudospectral shear transforma-
tions (2.8) and (2.9) are consistent with the continuous ones (2.7). Let us remark that
in addition to the analysis of the spectral consistency, we will also pay attention to
the truncation R. The consistency error of the pseudospectral shear transformations
is stated in the following proposition for \scrS \alpha 

1 but the result is also valid for \scrS \alpha 
2 .

Proposition 2.2. For all s > 1 and for all M > 0, there exists c > 0 such that
for all u \in S (\BbbR 2), \alpha \in ( - M,M), R > 0, and N \in \BbbN \ast we have

\| \scrS \alpha 
1 \bfitu  - \bfitv \| L2(\BbbG 2) \leq c | \alpha | R

 - s + hs\surd 
h

\| u\| Xs+6 ,

where \bfitu = u| \BbbG 2 and \bfitv = v| \BbbG 2 with v(x) = u(x1 + \alpha x2, x2).

Here the norm \| \cdot \| Xs+6 is not optimal; it would be possible to have the same
result with a norm \| \cdot \| Xs+\nu where 0 < \nu < 6. The relevant thing in this is that to
have a consistency error of order s with respect to the stepsize of the grid and the
length of the box (up to the h - 1/2 factor) it is enough to consider functions a bit
more well localized and smooth than functions in Xs.

Proof of Proposition 2.2. Applying the discrete Fourier--Plancherel isometry, we
get

\| \scrS \alpha 
1 \bfitu  - \bfitv \| 2L2(\BbbG 2) =

h\eta 

2\pi 

\sum 
(\xi 1,g2)\in \widehat \BbbG \times \BbbG 

| (\scrF 1\scrS \alpha 
1 \bfitu )\xi 1,g2  - (\scrF 1 \bfitv )\xi 1,g2 | 

2.(2.11)

Thus, we are going to expand \scrF 1 \bfitv and \scrF 1 \bfitu with respect to u. More precisely, we
apply the Poisson formula to get

\scrF 1 \bfitu = h
\sum 

g1\in h\BbbZ 
u(g1, g2)e

 - i\xi 1g1  - h
\sum 

g1\in \BbbG c

u(g1, g2)e
 - i\xi 1g1

= F1u(\xi 1, g2) +
\sum 
k\in \BbbZ \ast 

F1u

\biggl( 
\xi 1 +

2k\pi 

h
, g2

\biggr) 
 - h

\sum 
g1\in \BbbG c

u(g1, g2)e
 - i\xi 1g1 ,

where F1u(\xi 1, x2) =
\int 
u(x)e - i\xi 1x1dx1 is the continuous Fourier transform of u along

the first direction and \BbbG c = h\BbbZ \setminus \BbbG . Consequently, since F1v(\xi 1, x2) = ei\alpha \xi 1x2F1u,
we decompose the consistency error into three terms,

(\scrF 1\scrS \alpha 
1 \bfitu )\xi 1,g2 - (\scrF 1 \bfitv )\xi 1,g2 =

\sum 
k\in \BbbZ \ast 

\Bigl( 
1 - ei\alpha 

2k\pi 
h g2

\Bigr) 
ei\alpha \xi 1g2F1u

\biggl( 
\xi 1 +

2k\pi 

h
, g2

\biggr) 
(\bfitvarepsilon 1\xi 1,g2)

+ h
\sum 

g1\in \BbbG c

\bigl( 
1 - ei\alpha \xi 1g2

\bigr) 
u(g1, g2)e

 - i\xi 1g1 (\bfitvarepsilon 2\xi 1,g2)

+ h
\sum 

g1\in \BbbG c

[u(g1 + \alpha g2, g2) - u(g1, g2)] e
 - i\xi 1g1 (\bfitvarepsilon 3\xi 1,g2).

Now we bound each one of these three consistency errors.
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Estimation of \bfitvarepsilon 1: First, we have

| \bfitvarepsilon 1\xi 1,g2 | \leq 
\sum 
k\in \BbbZ \ast 

\bigm| \bigm| \bigm| \bigm| \alpha 2k\pi h g2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| F1u

\biggl( 
\xi 1 +

2k\pi 

h
, g2

\biggr) \bigm| \bigm| \bigm| \bigm| 
=

\sum 
k\in \BbbZ \ast 

\bigm| \bigm| \bigm| \bigm| \alpha 2k\pi h g2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \xi 1 + 2k\pi 

h

\bigm| \bigm| \bigm| \bigm|  - s - 1 \bigm| \bigm| \bigm| \bigm| F1(| \partial x1
| s+1u)

\biggl( 
\xi 1 +

2k\pi 

h
, g2

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leq 

\sum 
k\in \BbbZ \ast 

\bigm| \bigm| \bigm| \bigm| \alpha 2k\pi h g2

\bigm| \bigm| \bigm| \bigm| \biggl( (2| k|  - 1)\pi 

h

\biggr)  - s - 1 \bigm| \bigm| \bigm| \bigm| F1(| \partial x1
| s+1u)

\biggl( 
\xi 1 +

2k\pi 

h
, g2

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leq 2| \alpha | \sqrt{} 

1 + g22

\Bigl( \pi 
h

\Bigr)  - s \sum 
k\in \BbbZ \ast 

| k| (2| k|  - 1) - s - 1
\bigm\| \bigm\| F1

\bigl( 
(1 + x22)\langle \partial x1

\rangle s+1u
\bigr) \bigm\| \bigm\| 

L\infty (\BbbR 2)

\leq C2 4| \alpha | \zeta (s)\sqrt{} 
1 + g22

\Bigl( \pi 
h

\Bigr)  - s \bigm\| \bigm\| \langle i\partial x2\rangle \langle x1\rangle \langle x2\rangle 2\langle i\partial x1\rangle s+1u
\bigm\| \bigm\| 
L2(\BbbR 2)

,

where \zeta denotes the Riemann function, C > 0 is a universal constant associated with
the Sobolev embedding L\infty (\BbbR ) \rightarrow H1(\BbbR ), and \langle i\partial x2\rangle ,\langle i\partial x1\rangle s+1 are naturally defined
as Fourier multipliers. This estimate involves a norm of u that is neither usual nor
isotropic. Furthermore, the estimates of \bfitvarepsilon 2 and \bfitvarepsilon 3 will lead to some other norms
of this kind. Consequently, in order to get an estimate as readable as possible, we
control these norms by the Xs+6 norm. Such a control can be realized with classical
techniques of pseudodifferential calculus. However, it would require introducing many
notions and notation, like the Weyl quantization, some classical classes of symbols,
and parametrix. Thus, since these estimates are not really crucial here, we omit
details. Nevertheless, these bounds could be obtained by directly applying Theorems
1.2.16, 1.3.6, and 1.4.1 of [24].

Now, we observe that by monotonicity we have

h
\sum 

g2\in \BbbG \setminus \{ 0\} 

1

1 + g22
\leq 

\int 
\BbbR 

1

1 + y2
dy \leq \pi .(2.12)

Thus, since \bfitvarepsilon 1\xi 1,0 = 0, there exists a constant c > 0, depending only on s, such that

h\eta 

2\pi 

\sum 
(\xi 1,g2)\in \widehat \BbbG \times \BbbG 

| \bfitvarepsilon 1\xi 1,g2 | 
2 \leq c| \alpha | 2R - 1h2s(\#\widehat \BbbG )\| u\| Xs+6 \leq c| \alpha | 2h2s - 1\| u\| 2Xs+6 .

Estimation of \bfitvarepsilon 2: First, naturally, we control \bfitvarepsilon 2 by

| \bfitvarepsilon 2\xi 1,g2 | \leq \alpha | \xi 1| | g2| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| h
\sum 

g1\in \BbbG c

u(g1, g2)e
 - i\xi 1g1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .(2.13)

In order to absorb the factor \xi 1 on the left, we perform a discrete integration by
parts. So, we assume that \xi 1 \not = 0, and we denote \xi 1 = k1\eta and g1 = g2 = n1h, where
k1 \in 

q
 - 
\bigl\lfloor 
N - 1
2

\bigr\rfloor 
,
\bigl\lfloor 
N
2

\bigr\rfloor y
and n1 \in \BbbZ \setminus 

q
 - 
\bigl\lfloor 
N - 1
2

\bigr\rfloor 
,
\bigl\lfloor 
N
2

\bigr\rfloor y
.

Then we introduce N+ = 1+ \lfloor N/2\rfloor and N - =  - 1 - \lfloor (N  - 1)/2\rfloor so that we have
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h
\sum 

g1\in \BbbG c

u(g1, g2)e
 - i\xi 1g1 = h

\sum 
n1\geq N+

u(g1, g2)e
 - 2i\pi n1k1

N + h
\sum 

n1\leq N - 

u(g1, g2)e
 - 2i\pi n1k1

N

= h
\sum 

n1\geq N+

u(g1, g2) - u(g1 + h, g2)

h
h

n1\sum 
n=N+

e - 
2i\pi nk1

N (E+)

+ h
\sum 

n1\leq N - 

u(g1, g2) - u(g1  - h, g2)

h
h

N - \sum 
n=n1

e - 
2i\pi nk1

N (E - ).

To control (E+), first we observe that since 0 \leq | k1| \leq N/2, we have\bigm| \bigm| \bigm| \bigm| \bigm| h
n1\sum 

n=N+

e - 
2i\pi nk1

N

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 2h

| 1 - e - 
2i\pi k1

N | 
\leq c

hN

2\pi | k1| 
=

c

| \xi 1| 
,

where c is a universal constant. Then, by application of the mean value theorem, we
get

| E+| \leq 
c

| \xi 1| (1 + g22)

\biggl( 
sup
x\in \BbbR 2

| (1 + x22)| x1| s+1\partial x1
u(x)| 

\biggr) 
h

\sum 
n1\geq N+

gs+1
1

\leq cs
| \xi 1| (1 + g22)

\| u\| Xs+6R - s 1

N

\sum 
n1\geq 0

\biggl( 
N+ + n1

N

\biggr) s+1

\leq cs
| \xi 1| (1 + g22)

\| u\| Xs+6R - s 1

N

\sum 
n1\geq 0

\biggl( 
1

2
+
n1
N

\biggr) s+1

,

(2.14)

where cs > 0 is a constant depending only on s. We recognize a Riemann sum, so we
have

1

N

\sum 
n1\geq 0

\biggl( 
1

2
+
n1
N

\biggr) s+1

 -  -  -  - \rightarrow 
N\rightarrow \infty 

2 - s - 2

\int \infty 

1

y - s - 1dy =
2 - s - 2

s
.

In particular, since this sequence converges, it is bounded by a constant depending
only on s. Thus, we obtain the following bound for | E+| :

| E+| \leq 
cs

| \xi 1| (1 + g22)
\| u\| Xs+6R - s,

where cs is another constant depending only on s. Note that, by symmetry, the same
control holds for E - .

Finally, coming back to (2.13) and using (2.12), we have another constant, denoted
cs, depending only on s such that

h\eta 

2\pi 

\sum 
(\xi 1,g2)\in \widehat \BbbG \times \BbbG 

| \bfitvarepsilon 2\xi 1,g2 | 
2 \leq cs| \alpha | 2R - 1R - 2s(\#\widehat \BbbG )\| u\| 2Xs+6 \leq cs| \alpha | 2h - 1R - 2s\| u\| 2Xs+6 .

(2.15)

Estimation of \bfitvarepsilon 3: Applying the mean value theorem, for any g1, g2, \alpha \in \BbbR , there
exists mg1,g2,\alpha in [g1; g1 + \alpha g2] such that

u(g1 + \alpha g2, g2) - u(g1, g2) = \alpha g2\partial x1
u(mg1,g2,\alpha , g2).
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(2.16) | \bfitvarepsilon 3\xi 1,g2 | \leq h
\sum 

g1\in \BbbG c

| \alpha | | g2| | \partial x1
u(mg1,g2,\alpha , g2)| 

\leq h
\sum 

g1\in \BbbG c

| \alpha | \sqrt{} 
1 + g22

\bigm| \bigm| \bigm| \bigm| \biggl( mg1,g2,\alpha 

g2

\biggr) \bigm| \bigm| \bigm| \bigm|  - s - 1

sup
x\in \BbbR 2

| (1 + x22)| x| s+1\partial x1u(x)| .

To control the norm of the two-dimensional vector in the previous estimate, we
use the following technical lemma, whose proof is postponed to the end of this proof.

Lemma 2.3. If y1, y2, y3, \lambda \in \BbbR are such that y3 \in [y1; y1 + \lambda y2], then we have\bigm| \bigm| \bigm| \bigm| \biggl( y3y2
\biggr) \bigm| \bigm| \bigm| \bigm| \geq | y1| \surd 

1 + \lambda 2
.

Consequently, applying Lemma 2.3 to (2.16), we get

| \bfitvarepsilon 3\xi 1,g2 | \leq cs
| \alpha | \sqrt{} 
1 + g22

\bigm| \bigm| \bigm| \bigm| R

2
\surd 
1 +M2

\bigm| \bigm| \bigm| \bigm|  - s - 1

\| u\| Xs+6

\left(  h \sum 
g1\in \BbbG c

\bigm| \bigm| \bigm| \bigm| 2g1R
\bigm| \bigm| \bigm| \bigm|  - s - 1

\right)  ,

where cs is a constant depending only on s.
Then, carrying out the same procedure as in (2.14), we get another constant cs

depending only on s such that\left(  h \sum 
g1\in \BbbG c

\bigm| \bigm| \bigm| \bigm| 2g1R
\bigm| \bigm| \bigm| \bigm|  - s - 1

\right)  \leq csR.

Thus we have the estimate

| \bfitvarepsilon 3\xi 1,g2 | \leq cs,M
| \alpha | \sqrt{} 
1 + g22

R - s\| u\| Xs+6 ,

where cs,M is a constant depending only on s and M . Consequently, we can repeat
the same argument as (2.15) to get

h\eta 

2\pi 

\sum 
(\xi 1,g2)\in \widehat \BbbG \times \BbbG 

| \bfitvarepsilon 3\xi 1,g2 | 
2 \leq cs,M | \alpha | 2h - 1R - 2s\| u\| 2Xs+6 ,

where cs,M is another constant depending only on s and M .
We conclude by summing the different contributions of \bfitvarepsilon 1, \bfitvarepsilon 2, and \bfitvarepsilon 3.

Let us prove Lemma 2.3.

Proof of Lemma 2.3. If 0 \in [y1; y1+\lambda y2], then we have | y1| \leq \lambda | y2| and so we get\bigm| \bigm| \bigm| \bigm| \biggl( y3y2
\biggr) \bigm| \bigm| \bigm| \bigm| \geq | y2| \geq 

| y1| 
| \lambda | 

\geq | y1| \surd 
1 + \lambda 2

.

Else we have | y3| = | y1| or | y3| = | y1 + \lambda y2| . If | y3| = | y1| , then we have\bigm| \bigm| \bigm| \bigm| \biggl( y3y2
\biggr) \bigm| \bigm| \bigm| \bigm| \geq | y3| = | y1| \geq 

| y1| \surd 
1 + \lambda 2

.
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A674 J. BERNIER, F. CASAS, AND N. CROUSEILLES

Else if | y3| = | y1 + \lambda y2| , we have\bigm| \bigm| \bigm| \bigm| \biggl( y3y2
\biggr) \bigm| \bigm| \bigm| \bigm| 2 = y22 + (y1 + \lambda y2)

2.

This last quantity is a second-order polynomial with respect to y2. Thus its infimum
can be determined explicitly. More precisely, we have

y22 + (y1 + \lambda y2)
2 \geq | y1| 2

1 + \lambda 2
.

2.1.2. Backward error analysis. We aim at describing the long time behavior
of the splitting methods. So, we perform a general backward error analysis1 for a
large class of methods including Lie and Strang splittings but also the new splitting.
Note that since we deal with a linear problem the expansions are convergent. This is
the goal of the next proposition.

Proposition 2.4. If a, b \in \BbbR satisfy ab < 2, then

ebx1\partial x2 e - ax2\partial x1 = eJLa,bx\cdot \nabla (2.17)

and

e - 
a
2 x2\partial x1 ebx1\partial x2 e - 

a
2 x2\partial x1 = eJSa,bx\cdot \nabla ,(2.18)

where

La,b = \mu a,b

\biggl( 
b ab

2
ab
2 a

\biggr) 
and Sa,b = \mu a,b

\biggl( 
b 0
0 a(1 - ab

4 )

\biggr) 
(2.19)

with \mu a,b = F (ab(1  - ab/4)), where F is the continuous function on ( - \infty , 1] defined
by

F (x) =

\left\{     
arcsin(

\surd 
x)\surd 

x
if 0 < x \leq 1,

asinh(
\surd 
 - x)\surd 

 - x
if x < 0,

1 if x = 0.

Proof. Considering the transport equation (2.2) which can be solved with the
method of characteristics, we have

etAx\cdot \nabla u0 = uin \circ etA.

Thus, noting that this formula maps an action on the left to an action on the right,
(2.17) is equivalent to

exp

\biggl( 
0  - a
0 0

\biggr) 
exp

\biggl( 
0 0
b 0

\biggr) 
= eJLa,b ,

with J given by (1.2). These exponentials of matrices can be written as shear trans-
forms. So (2.17) is equivalent to

Pa,b :=

\biggl( 
1  - a
0 1

\biggr) \biggl( 
1 0
b 1

\biggr) 
=

\biggl( 
1 - ab  - a
b 1

\biggr) 
= eJLa,b .(2.20)

1The reader can refer to [20] for an overview on backward error analysis.
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Similarly, (2.18) is equivalent to\biggl( 
1  - a/2
0 1

\biggr) \biggl( 
1 0
b 1

\biggr) \biggl( 
1  - a/2
0 1

\biggr) 
= eJSa,b .(2.21)

First, we prove that if (2.20) holds with La,b given by (2.19), then (2.20) also holds
with Sa,b given by (2.19). Indeed, observing that a Lie splitting is always conjugate
to the Strang splitting we have\biggl( 

1  - a/2
0 1

\biggr) \biggl( 
1 0
b 1

\biggr) \biggl( 
1  - a/2
0 1

\biggr) 
=

\biggl( 
1 a/2
0 1

\biggr) 
Pa,b

\biggl( 
1  - a/2
0 1

\biggr) 
=

\biggl( 
1 a/2
0 1

\biggr) 
eJLa,b

\biggl( 
1  - a/2
0 1

\biggr) 
.

But ( 1  - a/2
0 1

) is symplectic, i.e.,

t\biggl( 
1  - a/2
0 1

\biggr) 
J

\biggl( 
1  - a/2
0 1

\biggr) 
= J.

Thus, since symplectic transforms map Hamiltonian systems on Hamiltonian systems
(see, e.g., section VI of [20]), we have\biggl( 

1 a/2
0 1

\biggr) 
eJLa,b

\biggl( 
1  - a/2
0 1

\biggr) 
= exp

\biggl( 
J

t\biggl( 
1  - a/2
0 1

\biggr) 
La,b

\biggl( 
1  - a/2
0 1

\biggr) \biggr) 
= eJSa,b ,

where Sa,b is given by (2.19).
So, now we aim at proving (2.20). First, the existence of such an La,b is ensured

by the following lemma (an elementary proof is given at the end of this proof).

Lemma 2.5. If a, b are small enough, there exists a symmetric matrix La,b such
that La,b goes to 0 as (a, b) goes to 0 and Pa,b = exp(JLa,b).

Then, we have to determine a formula for La,b. Since La,b is a symmetric matrix,
eJLa,b is a Hamiltonian flow at time 1. A fortiori, La,b is a constant of motion. So we
have

t
(eJLa,b)La,be

JLa,b = La,b.

But, by construction, eJLa,b = Pa,b, so La,b is an eigenvector associated with the
eigenvalue 1 of the linear application

Ra,b :

\biggl\{ 
S2(\BbbR ) \rightarrow S2(\BbbR ),
Q \mapsto \rightarrow t

Pa,bQPa,b.

By a straightforward calculation, we observe that

Qa,b =

\biggl( 
b ab

2
ab
2 a

\biggr) 
satisfies Ra,b(Qa,b) = Qa,b.(2.22)

However, the following lemma holds (it is proven at the end of this proof).

Lemma 2.6. If 0 < ab < 4 the eigenspace of Ra,b associated with the eigenvalue
1 is of dimension 1.

Consequently, we deduce that if 0 < ab < 4, then there exists \mu a,b \in \BbbR such that

La,b = \mu a,bQa,b.(2.23)
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Now, we just have to determine \mu a,b. Since La,b is symmetric, it is diagonalizable
in an orthonormal basis, i.e.,

\exists \lambda \in \BbbR 2,\exists \Omega \in O2(\BbbR ), La,b = \Omega  - 1

\biggl( 
\lambda 1

\lambda 2

\biggr) 
\Omega = \Omega  - 1D\Omega .

So, since J and \Omega commute, we have

Pa,b = \Omega  - 1eJD\Omega .

Since we assume that 0 < ab < 4, we deduce from (2.23) that La,b is either positive or
negative. In particular we have \lambda 1\lambda 2 > 0. Thus we can define the symplectic matrix

K =

\biggl( 
4
\sqrt{} 
\lambda 1/\lambda 2

4
\sqrt{} 
\lambda 2/\lambda 1

\biggr) 
.

This matrix satisfies
\surd 
\lambda 1\lambda 2

t
KK = D and J

t
K = K - 1J . Thus, we have

Pa,b = (K\Omega ) - 1e
\surd 
\lambda 1\lambda 2J(K\Omega ) = (K\Omega ) - 1

\biggl( 
cos

\bigl( \surd 
\lambda 1\lambda 2

\bigr) 
 - sin

\bigl( \surd 
\lambda 1\lambda 2

\bigr) 
sin

\bigl( \surd 
\lambda 1\lambda 2

\bigr) 
cos

\bigl( \surd 
\lambda 1\lambda 2

\bigr) \biggr) 
(K\Omega ).

(2.24)

In particular, we have

TrPa,b = 2 cos
\Bigl( \sqrt{} 

\lambda 1\lambda 2

\Bigr) 
= 2 cos

\Bigl( \sqrt{} 
detLa,b

\Bigr) 
= 2 cos

\Bigl( 
\mu a,b

\sqrt{} 
detQa,b

\Bigr) 
.

As a consequence, since
\sqrt{} 

detLa,b goes to zero when (a, b) goes to 0, we deduce from
a straightforward calculation that if ab is small enough, then

\mu a,b = \pm F (ab(1 - ab/4)).

Finally, we have to determine the sign of \mu a,b. First, observe that by continuity, we
have either \mu a,b > 0 for all a, b small enough satisfying ab > 0 or \mu a,b < 0 for all a, b
small enough satisfying ab > 0. This second case is excluded because when a goes to
zero we have

e - F (a2(1 - a2/4))JQa,a = e - aJ+\scrO (a2) = P - a, - a +\scrO (a2) \not = Pa,a +\scrO (a2).

To conclude, we have proved that if ab > 0 and (a, b) is small enough, then

Pa,b = eF (ab(1 - ab/4))JQa,b .

Furthermore, this relation is analytic with respect to a and b, so it can be extended to
all a, b \in \BbbR such that ab < 2. Indeed, under this assumption we have ab(1 - ab/4) \in 
( - \infty , 1), which is the domain of analyticity of F .

Let us prove the two lemmas used within the proof.

Proof of Lemma 2.5. Notice that if a and b are small enough, Pa,b defined in
(2.20) is close to the identity. Consequently, it admits a logarithm Ma,b \in M2(\BbbR ),
defined by

Ma,b =
\sum 
n\in \BbbN 

( - 1)n

n+ 1
(Pa,b  - I2)

n
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and satisfying
eMa,b = Pa,b.

A fortiori, we have exp(TrMa,b) = detPa,b = 1. Hence we have TrMa,b = 0. Fur-
thermore, the following application defines an isomorphism of vector spaces (it is an
injection between two spaces of dimension 3):\biggl\{ 

S2(\BbbR ) \rightarrow sl2(\BbbR ),
L \mapsto \rightarrow JL,

where sl2(\BbbR ) = \{ M \in M2(\BbbR ) | TrM = 0\} . As a consequence, there exists a symmetric
matrix La,b \in S2(\BbbR ) such that

Ma,b = JLa,b.

Proof of Lemma 2.6. Since 0 < ab < 4, Qa,b is either positive or negative, and,
as a consequence, the following Euclidean norm is well defined on S2(\BbbR ):

\forall K \in S2(\BbbR ), \| K\| 2a,b :=
\int 
\BbbR 2

(
t
xKx)2e - | txQa,bx| dx.

Since detPa,b = 1, computing \| R - 1
a,bK\| a,b, we deduce from a change of variables and

from (2.22) that
\forall K \in S2(\BbbR ), \| Ra,bK\| a,b = \| K\| a,b.

This relation means that Ra,b is an isometry for the Euclidean norm \| \cdot \| a,b. A fortiori,
we have detRa,b = \pm 1. But, since R0,0 = I2 and (a, b) \mapsto \rightarrow detRa,b is a continuous
map, we deduce that detRa,b = 1. Consequently, Ra,b is a rotation in a space of
dimension 3. So, there are only two possibilities: either Ra,b is the identity or the
eigenspace of Ra,b associated with the eigenvalue 1 is of dimension 1.

To conclude, we just have to verify that Ra,b is not the identity. First, we observe
that Pa,b is not a scalar matrix, so there exists x \in \BbbR 2 such that x is not an eigenvector
of Pa,b. Then, we consider a vector y \in \BbbR 2 \setminus \{ 0\} such that x and y are orthogonal.
By construction, we have

t
yPa,bx \not = 0.

Consequently, if K = y
t
y \in S2(\BbbR ), we have

t
xRa,b(K)x = (

t
yPa,bx)

2 \not = 0 = (
t
yx)

2
=

t
xKx.

Thus, we have Ra,b(K) \not = K.

The classical splitting formulas of Lie and Strang correspond to the choice a = b =
\delta t in (2.17) and (2.18). However, as mentioned in the introduction, these choices are
not necessarily the best. For the Strang like splittings, a straigthforward calculation
proves that there exists an optimal choice for which the splitting is exact. This choice
can be obtained by direct formal calculations by assuming a decomposition of the
rotation matrix and we then can write the following lemma.

Lemma 2.7. If \delta t \in ( - \pi , \pi ) then we have

S2 tan(\delta t/2),sin(\delta t) = \delta t

\biggl( 
1 0
0 1

\biggr) 
.

Note that due to the nondiagonal terms of La,b, it is impossible to design an exact
splitting based on the Lie splitting.
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2.1.3. Convergence. We now consider the convergence of the pseudospectral
splittings (2.10) to approximate our problem (2.1). Then, for a discrete initial con-
dition \bfitu = uin| \BbbG 2 , the numerical solution at time tn = n\delta t (n \in \BbbN ) is given by n

compositions of the operators defined in (2.10). For instance, for the standard Strang
splitting, the numerical solution at time tn is (\scrT \delta t)n \bfitu . In the following theorem, we
show that, up to a spectral spatial error, the dynamics generated by the Strang (resp.,
Lie) pseudospectral method \scrT \delta t (resp., \scrL \delta t) corresponds to the exact solution of some
modified equations over very long times.

Theorem 2.8. For all s > 0 there exists c > 0 such that for all N \in \BbbN \ast , all
R > 0, all u \in S (\BbbR 2), all n \in \BbbN , and all \delta t \in [ - 1, 1] with tn = n\delta t, we have\bigm\| \bigm\| \bigm\| \bigm\| (\scrL \delta t)

n \bfitu  - 
\Bigl( 
etnJS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

\leq c tn
R - s + hs\surd 

h
\| u\| Xs+6

and \bigm\| \bigm\| \bigm\| \bigm\| (\scrT \delta t)n \bfitu  - 
\Bigl( 
etnJS

\scrT 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

\leq c tn
R - s + hs\surd 

h
\| u\| Xs+6 ,

where \bfitu = u| \BbbG 2 , S\scrL 
\delta t

:= L\delta t,\delta t/\delta t = I2 +\scrO (\delta t), and S
\scrT 
\delta t

:= S\delta t,\delta t/\delta t = I2 +\scrO (\delta 2t ). The
definitions of Sa,b and La,b are given by (2.19) in Proposition 2.4, whereas \scrL \delta t and
\scrT \delta t are given by (2.10).

Proof. We focus only on proving the convergence estimate for the Lie splitting.
The same proof could be applied to prove the estimate for the Strang splitting.

Let \bfitvarepsilon n \in L2(\BbbG 2) be the consistency error at time tn. It is defined by

\bfitvarepsilon n = \scrL \delta t

\Bigl( 
etnJS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

 - 
\Bigl( 
etn+1JS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

.

As usual, for linear schemes, the convergence error is given by

(\scrL \delta t)
n \bfitu  - 

\Bigl( 
etnJS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

=

n - 1\sum 
k=0

\scrL n - 1 - k
\delta t

\bfitvarepsilon k .

Here, \scrL \delta t is an isometry of L2(\BbbG 2), so we have\bigm\| \bigm\| \bigm\| \bigm\| (\scrL \delta t)
n \bfitu  - 

\Bigl( 
etnJS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

\leq 
n - 1\sum 
k=0

\| \bfitvarepsilon k \| L2(\BbbG 2) \leq n sup
k\in \BbbN 

\| \bfitvarepsilon k \| L2(\BbbG 2).

Thus, we just have to bound \bfitvarepsilon k. Using formulas of Proposition 2.4, we decompose \bfitvarepsilon k
into two consistency errors for the pseudospectral shear transformations:

\bfitvarepsilon k = \scrS \delta t
2

\biggl[ 
\scrS  - \delta t
1

\Bigl( 
etnJS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

 - 
\Bigl( 
e - \delta tx2\partial x1 etnJS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

\biggr] 
+ \scrS \delta t

2

\Bigl( 
e - \delta tx2\partial x1 etnJS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

 - 
\Bigl( 
e\delta tx1\partial x2 e - \delta tx2\partial x1 etnJS

\scrL 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

.

Then applying Proposition 2.2 and using that \scrS \delta t
2 is an isometry on L2(\BbbG 2), we get a

constant c > 0, depending only on s > 0 such that

\| \bfitvarepsilon k \| L2(\BbbG 2) \leq c | \delta t| 
R - s + hs\surd 

h

\Bigl( 
\| etnJS

\scrL 
\delta t

x\cdot \nabla u\| Xs+6 + \| e - \delta tx2\partial x1 etnJS
\scrL 
\delta t

x\cdot \nabla u\| Xs+6

\Bigr) 
.

(2.25)

Now, we introduce a natural lemma to control these norms, whose proof is given at
the end of the proof.
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Lemma 2.9. For all \kappa > 0 and all s > 0, there exists a constant c > 0 such that
if \tau \in GL2(\BbbR ) satisfies

\forall x \in \BbbR 2, \kappa  - 1| x| \leq | \tau (x)| \leq \kappa | x| ,(2.26)

then for all u \in S (\BbbR 2) we have

\| u \circ \tau \| Xs \leq c \| u\| Xs .

Since if A \in M2(\BbbR ), then e(Ax\cdot \nabla )u = uin \circ eA, to get an estimate of the two norms
of (2.25) by \| u\| Xs+6 using Lemma 2.9 and to conclude this proof, we just have to
get estimates of the form (2.26) for \tau = ( 1  - \delta t

0 1 ) and \tau = exp(tJS\scrL 
\delta t
), uniformly with

respect to t \in \BbbR and \delta t satisfying | \delta t| \leq 1.
On the one hand, since ( 1  - \delta t

0 1 ) - 1 = ( 1 \delta t
0 1 ) and \delta t \in [ - 1, 1] which is compact, by

continuity, we get \kappa > 0 such that

\forall \delta t \in [ - 1, 1],\forall x \in \BbbR 2, \kappa  - 1| x| \leq 
\bigm| \bigm| \bigm| \bigm| \biggl( 1 \delta t

0 1

\biggr) 
x

\bigm| \bigm| \bigm| \bigm| \leq \kappa | x| .

On the other hand, we observe that the quadratic form associated with S\scrL 
\delta t

is a

constant of the motion of exp(tJS\scrL 
\delta t
): for all t \in \BbbR and all \delta t \in [ - 1, 1] we have

\forall x \in \BbbR 2,
t\Bigl( 
etJS

\scrL 
\delta tx

\Bigr) 
S\scrL 
\delta te

tJS\scrL 
\delta tx =

t
xS\scrL 

\delta tx.(2.27)

Furthermore, for all \delta t \in [ - 1, 1], we have

detS\scrL 
\delta t = \delta  - 2

t arcsin2
\biggl( \sqrt{} 

\delta 2t (1 - \delta 2t /4)

\biggr) 
> 0.

So, S\scrL 
\delta t

is either positive or negative. Thus, since (S\scrL 
\delta t
)1,1 > 0, it is positive. Then,

since \delta t \mapsto \rightarrow S\scrL 
\delta t

is a continuous map, S\scrL 
\delta t

and (S\scrL 
\delta t
) - 1 are bounded uniformly with

respect to \delta t \in [ - 1, 1]. Consequently, there exists \kappa > 0 such that for all \delta t \in [ - 1, 1]
and all x \in \BbbR 2 we have

\kappa  - 1 t
xS\scrL 

\delta tx \leq \kappa  - 1| S\scrL 
\delta t | | x| 

2 \leq | x| 2 \leq \kappa | (S\scrL 
\delta t)

 - 1|  - 1| x| 2 \leq \kappa 
t
xS\scrL 

\delta tx.

Thus we deduce of (2.27) that for all t \in \BbbR , all \delta t \in [ - 1, 1] and all x \in \BbbR 2 we have\bigm| \bigm| \bigm| etJS\scrL 
\delta tx

\bigm| \bigm| \bigm| 2 \leq \kappa 
t\Bigl( 
etJS

\scrL 
\delta tx

\Bigr) 
S\scrL 
\delta te

tJS\scrL 
\delta tx = \kappa 

t
xS\scrL 

\delta tx \leq \kappa 2| x| 2

and \bigm| \bigm| \bigm| etJS\scrL 
\delta tx

\bigm| \bigm| \bigm| 2 \geq \kappa  - 1
t\Bigl( 
etJS

\scrL 
\delta tx

\Bigr) 
S\scrL 
\delta te

tJS\scrL 
\delta tx = \kappa  - 1 t

xS\scrL 
\delta tx \geq \kappa  - 2| x| 2.

Proof of Lemma 2.9. We have to bound \| \langle x\rangle | s(u\circ \tau )\| L2(\BbbR 2)and \| \langle \xi \rangle sF (u\circ \tau )\| L2(\BbbR 2).
However, a straightforward calculation shows that

F (u \circ \tau ) = | det \tau |  - 1
(Fu) \circ t \tau  - 1,

and (2.26) is clearly equivalent to

| \tau | \leq \kappa and | \tau  - 1| \leq \kappa .

Thus, since | \tau | = | t\tau | , if we get a bound on \| \langle x\rangle s(u \circ \tau )\| L2(\BbbR 2), uniform with respect
to \tau , we also get a bound on \| \langle \xi \rangle sF (u \circ \tau )\| L2(\BbbR 2) uniform with respect to \tau .
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A680 J. BERNIER, F. CASAS, AND N. CROUSEILLES

Finally, to bound \| \langle x\rangle s(u\circ \tau )\| L2(\BbbR 2), we just have to apply a change of coordinates:

\| \langle x\rangle s(u \circ \tau )\| L2(\BbbR 2)=
\sqrt{} 

| det \tau |  - 1\| \langle \tau (x)\rangle su\| L2(\BbbR 2)\leq 
\sqrt{} 
| det \tau  - 1| \langle \tau \rangle s\| u\| Xs \leq \kappa s+1\| u\| Xs .

As a corollary of Theorem 2.8, we deduce the convergence error of these methods.

Corollary 2.10. For all s > 0 and all h0 > 0, there exists c > 0 such that for all
N \in \BbbN \ast , all R > 0, all u \in S (\BbbR 2), all n \in \BbbN , and all \delta t \in [ - 1, 1] and h = R/N \leq h0,
denoting tn = n\delta t, we have\bigm\| \bigm\| \bigm\| (\scrL \delta t)

n \bfitu  - 
\bigl( 
etnJx\cdot \nabla u

\bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

\leq c tn
R - s + hs\surd 

h
\| u\| Xs+6 + c | etnJ  - etnJS

\scrL 
\delta t | \| u\| X4

and\bigm\| \bigm\| \bigm\| (\scrT \delta t)n \bfitu  - 
\bigl( 
etnJx\cdot \nabla u

\bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

\leq c tn
R - s + hs\surd 

h
\| u\| Xs+6 + c | etnJ  - etnJS

\scrT 
\delta t | \| u\| X4 ,

where \bfitu = u| \BbbG 2 , \scrL \delta t and \scrT \delta t are given by (2.10)

Before proving this result, we introduce the following technical lemma.

Lemma 2.11. There exists a universal constant c > 0 such that for all v \in 
H2(\BbbR 2), all R > 0, and all N \in \BbbN \ast we have

\| v| \BbbG 2\| L2(\BbbG 2) \leq \| u\| L2(\BbbR 2) + c h2\| \Delta u\| L2(\BbbR 2).

Proof. First, we apply the Poisson formula and the discrete Fourier--Plancherel
isometry to get

\| v| \BbbG 2\| L2(\BbbG 2) \leq \| v| h\BbbZ 2\| L2(h\BbbZ 2) =
1

2\pi 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
k\in \BbbZ 2

Fv

\biggl( 
\cdot + 2k\pi 

h

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(( - \pi 

h ,\pi h )2)

.

Then we observe that if k \in \BbbZ 2 \setminus \{ 0\} and \xi \in ( - \pi 
h ,

\pi 
h )

2, then\bigm| \bigm| \bigm| \bigm| \xi + 2k\pi 

h

\bigm| \bigm| \bigm| \bigm| \geq \pi 

h
(2| k|  - 

\surd 
2).

Thus, we control \| v| \BbbG 2\| L2(\BbbG 2) by

1

2\pi 
\| Fv\| L2(( - \pi 

h ,\pi h )2) +
h2

2\pi 3

\sum 
k\in \BbbZ 2\setminus \{ 0\} 

1

(2| k|  - 
\surd 
2)2

\| (| \xi | 2Fv)

\biggl( 
\cdot +

2k\pi 

h

\biggr) 
\| L2(( - \pi 

h ,\pi h )2).

Finally, applying the Cauchy--Schwarz inequality and the Chasles relation, we control
the second term by

h2

2\pi 3
\| | \xi | 2Fv\| L2(\BbbR 2)

\sqrt{}    \sum 
k\in \BbbZ 2\setminus \{ 0\} 

1

(2| k|  - 
\surd 
2)4

.
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Proof of Corollary 2.10. We only focus on proving the convergence estimate for
the Lie splitting, the case of the Strang splitting being similar. Applying Theorem
2.8 and the triangle inequality, we have

\| (\scrL \delta t)
n \bfitu  - 

\bigl( 
etnJx\cdot \nabla u

\bigr) 
| \BbbG 2 \| L2(\BbbG 2) \leq c tn

R - s + hs\surd 
h

\| u\| Xs+6 + Eu,\delta t,n,\BbbG 

with

Eu,\delta t,n,\BbbG =

\bigm\| \bigm\| \bigm\| \bigm\| \Bigl( etnJS\scrL 
\delta t

x\cdot \nabla u - etnJx\cdot \nabla u
\Bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

.

Consequently, to prove the corollary, we just have to bound Eu,\delta t,n,\BbbG by | etnJ  - 
etnJS

\scrL 
\delta t | \| u\| X4 . Since h \leq h0, applying Lemma 2.11, we get a constant c > 0, depend-

ing only on h0 > 0, such that

Eu,\delta t,n,\BbbG \leq c
\bigm\| \bigm\| \bigm\| (1 - \Delta )

\Bigl( 
etnJS

\scrL 
\delta t

x.\nabla u - etnJx.\nabla u
\Bigr) \bigm\| \bigm\| \bigm\| 

L2(\BbbR 2)
.

Then applying the Fourier--Plancherel isometry, we get

Eu,\delta t,n,\BbbG \leq c

2\pi 

\bigm\| \bigm\| \bigm\| (1 + | \xi | 2)
\Bigl( 
Fu \circ 

t\Bigl( 
e - tnJS

\scrL 
\delta t

\Bigr) 
 - Fu \circ t\bigl( 

e - tnJ
\bigr) \Bigr) \bigm\| \bigm\| \bigm\| 

L2(\BbbR 2)
.

Then introducing a Taylor remainder under its integral form, we have

Eu,\delta t,n,\BbbG \leq 
\bigm\| \bigm\| \bigm\| \bigm\| (1 + | \xi | 2)

\int 1

0

\nabla \xi Fu(y\alpha ,\xi ,n,\delta t) \cdot 
t\Bigl( 
e - tnJS

\scrL 
\delta t  - e - tnJ

\Bigr) 
\xi d\alpha 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbR 2)

\leq | e - tnJS
\scrL 
\delta t  - e - tnJ | max

\alpha \in (0,1)
\| (1 + | \xi | 2)3/2\nabla \xi Fu(y\alpha ,\xi ,n,\delta t)\| L2(\BbbR 2),

(2.28)

where y\alpha ,\xi ,n,\delta t =
t
M\alpha ,n,\delta t\xi and M\alpha ,n,\delta t = I2  - \alpha (e - tnJS

\scrL 
\delta t  - e - tnJ).

Now, we distinguish two cases. If | e - tnJS
\scrL 
\delta t  - e - tnJ | \leq 1/2, then we deduce

| M\alpha ,n,\delta t  - I2| \leq 1
2 . Consequently, we have

| detM\alpha ,n,\delta t | \geq \kappa and | M - 1
\alpha ,n,\delta t

| \leq 2,

where \kappa is a universal constant.
Thus, by performing a natural change of coordinates, we get

Eu,\delta t,n,\BbbG \leq | e - tnJS
\scrL 
\delta t  - e - tnJ | 
\kappa 

\bigm\| \bigm\| \bigm\| (1 + | tM\alpha ,n,\delta t
 - 1\xi | 2)3/2\nabla \xi Fu

\bigm\| \bigm\| \bigm\| 
L2(\BbbR 2)

\leq 8
| e - tnJS

\scrL 
\delta t - e - tnJ | 
\kappa 

\bigm\| \bigm\| \bigm\| (1+| \xi | 2)3/2\nabla \xi Fu\| L2(\BbbR 2) \leq c| e - tnJS
\scrL 
\delta t - e - tnJ | 

\bigm\| \bigm\| \bigm\| u\| X4 ,

where c > 0 is a universal constant.
Finally, we have to consider the case where | e - tnJS

\scrL 
\delta t  - e - tnJ | \geq 1/2. Apply-

ing Lemma 2.11 and the Fourier--Plancherel isometry we get two constant c, \kappa > 0
depending only on h0 such that

Eu,\delta t,n,\BbbG \leq \| \bfitu \| L2(\BbbG 2) +
\bigm\| \bigm\| \bigm\| \bigl( etnJx\cdot \nabla u\bigr) | \BbbG 2

\bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

\leq c\| (1 - \Delta )u\| L2(\BbbR )

\leq \kappa | e - tnJS
\scrL 
\delta t  - e - tnJ | \| u\| X4 .
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Next, we focus on the new splitting \scrM \delta t . We provide a theorem showing that its
dynamics corresponds, up to a spectral spatial error, to the rotation with the exact
speed, for very long times.

Theorem 2.12. For all s, \nu > 0 there exists c > 0 such that for all N \in \BbbN \ast , all
R > 0, all u \in S (\BbbR 2), all n \in \BbbN , and all \delta t \in \BbbR satisfying | \delta t| < \pi  - \nu , denoting
tn = n\delta t, we have\bigm\| \bigm\| \bigm\| (\scrM \delta t)

n \bfitu  - 
\bigl( 
etnJx\cdot \nabla u

\bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

\leq c tn
R - s + hs\surd 

h
\| u\| Xs+6 ,(2.29)

where \bfitu = u| \BbbG 2 , and \scrM \delta t is given by (2.10).

Proof. By carrying out the same proof as in Theorem 2.8, we could easily prove
that for all s, \nu > 0 there exists c > 0 such that for all N \in \BbbN \ast , all R > 0, all
u \in S (\BbbR 2), all n \in \BbbN , and all \delta t \in \BbbR satisfying | \delta t| < \pi  - \nu , denoting tn = n\delta t, we
have \bigm\| \bigm\| \bigm\| \bigm\| (\scrM \delta t)

n \bfitu  - 
\Bigl( 
etnJS

\scrM 
\delta t

x\cdot \nabla u
\Bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbG 2)

\leq c tn
R - s + hs\surd 

h
\| u\| Xs+6 ,

where \bfitu = u| \BbbG 2 and S\scrM 
\delta t

:= S2 tan(\delta t/2),sin(\delta t)/\delta t, where Sa,b is given by (2.19).
Thus, to conclude this proof, we just have to observe that by Lemma 2.7 we have

S2 tan(\delta t/2),sin(\delta t) = \delta tI2.

Remark 2.13. For all \bfitu \in L2(\BbbG 2) we have \| \bfitu \| L\infty (\BbbG 2) \leq h - 1\| \bfitu \| L2(\BbbG 2); thus
(2.29) gives a control of convergence error with the discrete L\infty norm for very long
times: \bigm\| \bigm\| \bigm\| (\scrM \delta t)

n \bfitu  - 
\bigl( 
etnJx\cdot \nabla u

\bigr) 
| \BbbG 2

\bigm\| \bigm\| \bigm\| 
L\infty (\BbbG 2)

\leq c tn
R - s + hs

h3/2
\| u\| Xs+6 .

2.2. Numerical illustrations. In this subsection, we intend to illustrate the
different results obtained previously, namely the spatial accuracy of the pseudospectral
method and the time accuracy of the time splitting.

Spatial accuracy. First, we present some numerical results to illustrate the esti-
mates obtained in Proposition 2.2. To do so, we consider the function

u(x) = exp

\biggl( 
 - | x| 2

2

\biggr) 
, x = (x1, x2) \in \BbbR 2,

which is shifted by \alpha = 0.01. We denote v| \BbbG 2 , where v(x) = u(x1 +\alpha x2, x2) the exact
shifted solution, and we compute the (discrete) L2 norm of the difference between
\scrS \alpha 
1 u| \BbbG 2 and v| \BbbG 2 . The spatial grid \BbbG 2 is defined by (2.6), where h = R/N , R = 15,

and different values of N are considered to check the spatial accuracy. The results
are displayed in Figure 1. One can observe that for large h (or small N), the term
R - s is negligible and the term hs gives the exponential decreasing of the error which
is the typical behavior of spectral methods. On the contrary, for very small values of
h (or large values of N), the term R - s/h - 1/2 becomes prominent even if the error is
quite small (around 10 - 11).

Time accuracy. In this part, we give some numerical illustrations of the efficiency
of the new splitting. To do so, we consider the equation

\partial tu = Jx \cdot \nabla xu, x = (x1, x2) \in \BbbR 2,(2.30)
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Fig. 1. Spatial error (log-log scale) as a function of the number of points N between the exact
shifted solution and the numerical approximation. The right figure is a zoom.

Fig. 2. Solution u(T, x) of (2.30). Left: Exact solution u(T, x). Middle: Numerical solution
obtained by the new splitting. Right: Numerical solution obtained by the Strang splitting.

0 2000 4000 6000 8000 10000 12000
time

0

2

4

6

8

10

12

14

16

er
ro

r

New
Lie
Strang

Fig. 3. Time history of the relative errors between the solution of (2.30) and the numerical
solution obtained by the new splitting, the Lie splitting, and the Strang splitting.

with the initial condition

uin(x) =
1

2\pi \beta 

\biggl[ 
exp

\biggl( 
 - (x1  - 0.3)2

\beta 

\biggr) 
+ exp

\biggl( 
 - (x1 + 0.3)2

\beta 

\biggr) \biggr] 
exp

\biggl( 
 - x

2
2

\beta 

\biggr) 
,

with \beta = 0.01. The spatial truncated domain [ - 2, 2]2 is discretized with the grid \BbbG 2

defined by (2.6) with R = 4 and a space step h = R/N , N = 243 = 35. The time
step is \delta t \approx 0.139 and the final time is T = 105 (the number of iterations is 71888).
In Figures 2--5, some results are displayed where we compare the exact solution, the
solution given by (\scrT \delta t)n uin| \BbbG 2 (Strang splitting and spectral interpolation), the solution

given by (\scrL \delta t)
n uin| \BbbG 2 (Lie splitting and spectral interpolation), and the solution given

by the new method (\scrM \delta t)
n uin| \BbbG 2 (see (2.10)). First, in Figure 2, the three solutions

are plotted at the final time. We can observe that the exact solution and the solution
obtained by the new method are very close, whereas the solution obtained by the
Strang splitting is not good due to the fact that the angular velocity of the Strang
method is not exact. To make precise these observations, we plot in Figure 3 (Figure 4
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Fig. 4. Time history of the relative errors (zoom of Figure 3 around \=T \approx 3188 (left) and
\=T \approx 2\times 3188 (right)).
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Fig. 5. Time history of the relative errors between the solution of (2.30) and the numerical
solution obtained by the new splitting, the Lie splitting, and the Strang splitting with \delta t = \pi /4. The
right figure is a zoom of the left one around k \=T with \=T \approx 113, k = 1, 2, 3, 4.

is a zoom) the relative L\infty error of the new method and the Strang and the Lie
methods. The error produced by the new method is close to 10 - 13, which is the
spectral error. On the contrary, the Strang and Lie methods periodically produce an
error of order one. This is due to its wrong angular velocity: the solution moves away
from the exact solution producing large error and at some times, the Strang method
recovers the exact solution so that the error becomes very small. These times can
be computed from the above analysis. Indeed, from the rotation speed of the Strang

splitting \omega \delta t =
arcsin(

\surd 
\delta 2t (1 - \delta 2t /4))

\delta t
, we deduce that the exact solution (which rotates

with a speed \omega ex = 1) and the numerical solution obtained by the Strang method will
coincide every times \=T such that tn + \omega ex

\=T = tn + \omega \delta t
\=T [\pi ] (the factor \pi (instead

of a factor 2\pi ) is due to our choice of a symmetric initial condition). Then, we have
\=T = \pi /(\omega \delta t  - 1), which gives with our choice of time step \delta t \approx 0.139, \=T \approx 3888. We
observe a very good agreement in Figures 3, 4, and 5 (for which \delta t = \pi /4 and then
\=T \approx 113).

Finally, we study the performance of the new method. Indeed, we compare the
new splitting and a direct two-dimensional solution of (2.30). The direct resolution is
done by a semi-Lagrangian type strategy: at each time step, we first compute exactly
the feet of the characteristics equations and we then use a two-dimensional spectral
interpolation by means of the nonuniform fast Fourier transform (the so-called nufft
procedure introduced in [19]). We checked that this approach also leads to spectral
accuracy, and we want here to compare the two spectral methods in terms of CPU
time with respect to the total number of points N2 (N being the number of points per
direction). The results are displayed in Figure 6: the time execution (for 10 iterations)
for both methods (new splitting and nufft) as a function of N2 (for N = 25, . . . , 211),
in log--log scale. Let us mention that these runs have been conducted in a serial way
(in particular using FFT libraries of Julia), on a machine whose characteristics are
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Fig. 6. Time execution as a function of the total number of points (log--log scale). Blue: new
method (new splitting and one-dimensional fast Fourier transform). Red: exact computation of the
feet of the characteristics and two-dimensional nonuniform fast Fourier transform.

the following: Intel Xeon CPU E5-2630 v3 @ 2.40GHz. Even if both methods have
the same complexity \scrO (N2 log(N)), the new approach clearly has a smaller constant
(around 10 times smaller). Moreover, in such a splitting procedure, a simple and
efficient parallelization can be performed since the variable that does not appear in
the derivative is just a parameter.

3. Application to the Vlasov--Maxwell equations. In this section, we in-
tend to apply the above splitting to the context of the 1+1/2 Vlasov--Maxwell system.
Indeed, the time discretization of this system is based on a time splitting, and one of
the pieces (the so-called magnetic part) corresponds to a rotation in the velocity di-
rection due to the presence of the self-consistent electromagnetic field. Then, instead
of using a Strang splitting like in [16], we shall use the exact splitting presented in
the previous section, so that this magnetic part will be solved exactly in time and
with a spectral accuracy in the velocity directions. This is very helpful for designing
high-order methods for the full Vlasov--Maxwell system. After introducing the 1+1/2
Vlasov--Maxwell system we intend to solve, the splitting method introduced in [16] is
recalled and then high-order methods dedicated to systems split into three parts are
introduced.

3.1. Reduced 1+1/2 Vlasov--Maxwell equations. We consider the phase
space (x1, v1, v2) \in L \times \BbbR 2, where L = \BbbR /2\pi \BbbZ is a one-dimensional torus, and the
unknown functions f(t, x1, v1, v2), B(t, x1), and E(t, x1) = (E1, E2)(t, x1), which are
determined by solving the following system of evolution equations:

\partial tf + v1\partial x1
f + E \cdot \nabla vf  - BJv \cdot \nabla vf = 0,

\partial tB =  - \partial x1E2,

\partial tE2 =  - \partial x1
B  - 

\int 
\BbbR 2

v2f(t, x1, v)dv + \scrJ 2(t),

\partial tE1 =  - 
\int 
\BbbR 2

v1f(t, x1, v)dv + \scrJ 1(t),

(3.1)

where v = (v1, v2), \scrJ i(t) = 1/| L| 
\int 
L

\int 
\BbbR 2 vif(t, x1, v)dx1dv, i = 1, 2 (| L| denotes the

measure of L), and J denotes the symplectic matrix (1.2). This reduced system, which
has been considered in several former studies (see [9, 12, 16]), has to be supplemented
with the Gauss condition

\partial x1
E1(t, x1) =

\int 
\BbbR 2

f(t, x1, v)dv  - 1 \forall t \geq 0,(3.2)
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and with initial conditions f(t = 0, x1, v) = f in(x1, v), E2(t = 0, x1) = Ein
2 (x1) and

B(t = 0, x1) = Bin(x1). Notice that Ein
1 (x1) is implied by the Gauss condition (3.2)

at the initial time.

3.2. Splitting method. Here we propose to use the splitting method introduced
in [16] by reformulating the Vlasov--Maxwell system into

dF

dt
= \scrH E(F ) +\scrH f (F ) +\scrH B(F ), F (0) = F in,

where the fields \scrH E(F ),\scrH f (F ), and \scrH B(F ) will be as written below. We denote
by F (\delta t) = (f,E1, E2, B)(\delta t) the solution of the Vlasov--Maxwell system (3.1). This
solution can be formally written as F (\delta t) = \varphi \delta t(F

in) := exp((\scrH E +\scrH f +\scrH B)\delta t)F
in,

where F in = (f in, Ein
1 , E

in
2 , B

in) denotes the initial condition.
Now, we want to use a splitting method to approximate the system (3.1). To

do so, we shall use the splitting introduced in [16, 17] based on a decomposition
into three parts corresponding respectively to the fields \scrH E(F ),\scrH f (F ), and \scrH B(F ).
Then, a first order Lie method based on this decomposition is written \chi \delta t(F

in) =
\varphi \delta t(F

in) +\scrO (\delta t
2) with

\chi \delta t = \varphi 
[\scrH E ]
\delta t

\circ \varphi [\scrH f ]
\delta t

\circ \varphi [\scrH B ]
\delta t

,(3.3)

where \varphi 
[\scrH E ]
\delta t

, \varphi 
[\scrH f ]
\delta t

, \varphi 
[\scrH B ]
\delta t

denote the exact solutions corresponding to the fields \scrH E ,
\scrH f , and \scrH B . Using this notation, the adjoint [20] of the Lie method \chi  \star 

t is written

\chi  \star 
\delta t = \varphi 

[\scrH B ]
\delta t

\circ \varphi [\scrH f ]
\delta t

\circ \varphi [\scrH E ]
\delta t

.(3.4)

In the following we write the equations associated to the fields \scrH E ,\scrH f , and \scrH B :

\varphi 
[\scrH E ]
\delta t

: \partial tf + E \cdot \nabla vf = 0, \partial tE = 0, \partial tB =  - \partial x1
E2,

\varphi 
[\scrH f ]
\delta t

: \partial tf + v1\partial x1
f = 0, \partial tE =  - 

\int 
\BbbR 2

vfdv + \scrJ , \partial tB = 0,

\varphi 
[\scrH B ]
\delta t

: \partial tf  - BJv \cdot \nabla vf = 0, \partial tE1 = 0, \partial tE2 =  - \partial x1B, \partial tB = 0.

Then, as mentioned in [16], \varphi 
[\scrH E ]
\delta t

and \varphi 
[\scrH f ]
\delta t

can be computed exactly in time and

efficiently in phase space using spectral methods. However, the computation of \varphi 
[\scrH B ]
\delta t

was performed using a Strang splitting. Instead, we shall use the new splitting \scrM \delta t

introduced above to compute exactly in time \varphi 
[\scrH B ]
\delta t

and efficiently in phase space using
spectral methods. Let us remark that the application of the new splitting to the \scrH B

part requires a slight modification. Indeed, to solve \partial tf  - BJv \cdot \nabla vf = 0 (with B
constant in time during this part) on one time step \delta t from an initial condition f in

(defined on the velocity grid), we will use the new splitting with a modified time step
B\delta t to capture the right rotation speed, i.e., (\scrM B\delta t) with (\scrM \delta t) defined by (2.10).

Based on the fact that each step can be computed exactly in time, we now look for
efficient integration methods for systems separable into three parts which enable us
to design efficient high-order methods in time. A simple and efficient way to achieve
this goal is to consider compositions of a first-order method with its adjoint computed
at fractional stepsizes. This is the main subject of the next part.
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3.3. Composition methods for systems separable into three parts. To
simplify the presentation, we restrict ourselves to ordinary differential equations. The
so-obtained composition methods will then be used within the Vlasov--Maxwell frame-
work.

Let us consider the ODE

dx

dt
(t) = u(x(t)), x(0) = xin \in \BbbR D,(3.5)

with D \in \BbbN  \star , whose exact solution at time t = \delta t will be denoted by x(\delta t) = \varphi \delta t(x
in).

We are interested in problems where u in (3.5) can be split into three parts,

u(x) = ua(x) + ub(x) + uc(x),

in such a way that the exact flows \varphi 
[a]
\delta t
, \varphi 

[b]
\delta t
, \varphi 

[c]
\delta t
, corresponding to ua, ub, uc, can be

computed exactly. One might consider then splitting methods of the form

\varphi 
[a]
as\delta t

\circ \varphi [b]
bs\delta t

\circ \varphi [c]
cs\delta t

\circ \cdot \cdot \cdot \circ \varphi [a]
a1\delta t

\circ \varphi [b]
b1\delta t

\circ \varphi [c]
c1\delta t

(3.6)

and fix the coefficients ai, bi, ci, i = 1, . . . , s, so that it provides an approximation
of order, say, p. It turns out, however, that the number of order conditions to be
satisfied by these parameters grows very rapidly with the order. Thus, time-symmetric
schemes of order p = 4 (resp., p = 6) require solving 11 (resp., 56) conditions. A more
convenient way consists in considering compositions of \chi \delta t and its adjoint \chi  \star 

\delta t
, with

\chi \delta t = \varphi 
[a]
\delta t

\circ \varphi [b]
\delta t

\circ \varphi [c]
\delta t

and \chi  \star 
\delta t = \varphi 

[c]
\delta t

\circ \varphi [b]
\delta t

\circ \varphi [a]
\delta t
.(3.7)

More specifically, we construct integrators within the family

\scrG 1 \equiv 
\bigl\{ 
\psi \delta t = \chi \alpha 1\delta t \circ \chi  \star 

\alpha 2\delta t \circ \cdot \cdot \cdot \circ \chi \alpha 2s - 1\delta t \circ \chi  \star 
\alpha 2s\delta t : s \geq 1, (\alpha j)1\leq j\leq 2s \in \BbbR 2s

\bigr\} 
,

(3.8)

where \chi \delta t and \chi  \star 
\delta t

are given by (3.7), so that

\chi \delta t(x
in) = \varphi \delta t(x

in) +\scrO (\delta 2t ),(3.9)

and an analogous relation for \chi  \star 
\delta t
. Composition integrators \psi \delta t \in \scrG 1 are time-

symmetric (self-adjoint) whenever they have left-right palindromic sequences of coef-
ficients \alpha i, i.e., if \alpha 2s+1 - i = \alpha i, i = 1, . . . , s [20].

Notice that one could achieve methods of order p within this family even if only

first-order approximations to the flows \varphi 
[a]
\delta t
, \varphi 

[b]
\delta t
, and \varphi 

[c]
\delta t

are available, as long as one
is able to construct the corresponding adjoint \chi  \star 

\delta t
.

Remark 3.1. Another well-known class \scrG 2 of integrators is formed by compositions

\scrG 2 = \{ \psi \delta t = \phi \alpha 1\delta t \circ \cdot \cdot \cdot \circ \phi \alpha s\delta t : s \geq 1, (\alpha 1, . . . , \alpha s) \in \BbbR s\} ,(3.10)

where \phi \delta t : \BbbR D  - \rightarrow \BbbR D is any second-order self-adjoint integrator. Notice that if \phi \delta t
is chosen as \phi \delta t = \chi \delta t/2 \circ \chi  \star 

\delta t/2
, then \scrG 2 is contained in \scrG 1. These integrators also

enjoy the time-symmetric property if \alpha s+1 - i = \alpha i, i = 1, . . . , s.
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3.4. Analysis of composition methods for systems separable into three
parts. Next we formally analyze the new composition methods. To do that, it is
convenient to introduce the graded Lie algebra associated with the vector field defining
the ODE (3.5) and its corresponding exact flow \varphi \delta t . As is well known, for each
infinitely differentiable map g : \BbbR D  - \rightarrow \BbbR , g(\varphi \delta t(x)) admits an expansion of the form

g(\varphi \delta t(x)) = e\delta tF [g](x) = g(x) +
\sum 
k\geq 1

\delta t
k

k!
F k[g](x), x \in \BbbR D,

where F is the vector field associated with u,

F =

D\sum 
i=1

ui(x)
\partial 

\partial xi
.

Similarly, for the basic first-order method \chi \delta t defined by (3.9), one has g(\chi \delta t(x)) =
eY\delta t [g](x) with Y\delta t =

\sum 
k\geq 1 \delta t

kYk, and for its adjoint \chi  \star 
\delta t

\equiv \chi  - 1
 - \delta t

one has g(\chi  \star 
\delta t
(x)) =

e - Y - \delta t [g](x). Then, one can formally compute the operator series associated to any
integrator \psi \delta t \in \scrG 1 defined by (3.8)

\Psi \delta t = exp(Y\delta t\alpha 1
) exp( - Y - \delta t\alpha 2

) \cdot \cdot \cdot exp(Y\delta t\alpha 2s - 1
) exp( - Y - \delta t\alpha 2s

).

By repeated application of the Baker--Campbell--Hausdorff formula we can express
formally \Psi \delta t as the exponential of an operator F\delta t ,

\Psi \delta t = eF\delta t with F\delta t =
\sum 
k\geq 1

\delta t
kFk,

\delta t
kFk \in \scrL k for each k \geq 1 and \scrL =

\bigoplus 
k\geq 1 \scrL k is the graded Lie algebra generated by

the vector fields \{ \delta tY1, \delta 2t Y2, \delta 3t Y3, . . .\} , where, by consistency, Y1 = F . Notice that

Y\delta t\alpha i
= \delta t\alpha iY1 + (\delta t\alpha i)

2Y2 + (\delta t\alpha i)
3Y3 + \cdot \cdot \cdot ,

 - Y - \delta t\alpha i
= \delta t\alpha iY1  - (\delta t\alpha i)

2Y2 + (\delta t\alpha i)
3Y3  - \cdot \cdot \cdot 

so that

\Psi \delta t = exp
\bigl( 
\delta tw1Y1 + \delta t

2w2Y2 + \delta t
3(w3Y3 + w12[Y1, Y2])

+ \delta t
4(w4Y4 + w13[Y1, Y3] + w112[Y1, [Y1, Y2]]) +\scrO (\delta t

5)
\bigr) 
,

where w1, w2, . . . are polynomials in the coefficients \alpha i. In particular, we have

w1 =

2s\sum 
i=1

\alpha i, w2 =

2s\sum 
i=1

( - 1)i\alpha 2
i ,

w3 =

2s\sum 
i=1

\alpha 3
i , w4 =

2s\sum 
i=1

( - 1)i\alpha 4
i ,

w12 =
1

2

\left(  2s - 1\sum 
i=1

( - 1)i+1\alpha 2
i

2s\sum 
j=i+1

\alpha j +

2s - 1\sum 
i=1

\alpha i

2s\sum 
j=i+1

( - 1)j\alpha 2
j

\right)  .

(3.11)

3.5. Methods of order 4. To construct symmetric time-integration schemes of
order 4 within the family \scrG 1 we only have to solve equations w1 = 1 (for consistency)
and the third-order conditions w3 = w12 = 0, where w1, w3, w12 are given by (3.11)
and conditions at even order (w2 = w4 = 0) are automatically verified by symmetry.
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It is then clear that we need at least 2s = 6 maps (or stages). It turns out, however,
that methods with the minimum s = 3 do not usually provide the best efficiency.
In other words, considering additional stages (and thus some free parameters) leads
to more efficient schemes, even when the computational cost per step is also higher.
The difficulty then lies in the way the free parameters are fixed according with some
previously chosen optimization criterion. In this respect, several objective functions
have been considered in the literature. In particular we mention the following [7] (let
us recall that \bfitalpha = (\alpha 1, . . . , \alpha 2s) \in \BbbR 2s):

\scrE 1(\bfitalpha ) =

2s\sum 
i=1

| \alpha i| and \scrE 2(\bfitalpha ) = 2s

\bigm| \bigm| \bigm| \bigm| \bigm| 
2s\sum 
i=1

\alpha 5
i

\bigm| \bigm| \bigm| \bigm| \bigm| 
1/4

.(3.12)

The quantity \scrE 2 is usually the dominant error term for a number of problems. The
criterion we follow here will be to look for symmetric methods with small values of
\scrE 1 which, in addition, have also small values of \scrE 2. This has been shown to lead to
efficient methods when the processing technique is considered [7]. In what follows, we
consider composition methods in the class \scrG 1 with s = 3, 4, 5, 6 (see (3.8)) which have
been designed by optimizing both functions \scrE 1 and \scrE 2.

Case s = 3. The integrator reads

\psi 
[3]
\delta t

= \chi \alpha 1\delta t \circ \chi  \star 
\alpha 2\delta t \circ \chi \alpha 3\delta t \circ \chi  \star 

\alpha 3\delta t \circ \chi \alpha 2\delta t \circ \chi  \star 
\alpha 1\delta t(3.13)

and the unique (real) solution to the order conditionsw1=1,w3=w12=0, is given by

\alpha 1 = \alpha 2 =
1

2(2 - 21/3)
, \alpha 3 =

1

2
 - 2\alpha 1.

If \chi \delta t = \varphi 
[a]
\delta t

\circ \varphi [b]
\delta t

\circ \varphi [c]
\delta t
, then it involves 13 maps (the minimum number). The values

of the objective functions are \scrE 1(\bfitalpha ) \simeq 4.40483 and \scrE 2(\bfitalpha ) \simeq 4.55004.

Remark 3.2. Notice that this corresponds to the familiar scheme of Yoshida [31]

\psi \delta t = \phi \gamma \delta t/2 \circ \phi \beta \delta t \circ \phi \gamma \delta t/2

in \scrG 2 with \gamma = 1/(2  - 21/3). Moreover, this method is also recovered in [23] when
considering splitting methods of the form (3.6).

Case s = 4. The composition is

\psi 
[4]
\delta t

= \chi \alpha 1\delta t \circ \chi  \star 
\alpha 2\delta t \circ \chi \alpha 3\delta t \circ \chi  \star 

\alpha 4\delta t \circ \chi \alpha 4\delta t \circ \chi  \star 
\alpha 3\delta t \circ \chi \alpha 2\delta t \circ \chi  \star 

\alpha 1\delta t ,(3.14)

involving 17 maps. Now we have a free parameter, which we take as \alpha 1. The minima
of both\scrE 1 and\scrE 2 are achieved at approximately \alpha 1=0.358, and so the coefficients are

\alpha 1 = 0.358, \alpha 2 =  - 0.47710242361717810834,

\alpha 3 = 0.35230499471528197958, \alpha 4 = 0.26679742890189612876

with \scrE 1(\bfitalpha ) \simeq 2.9084 and \scrE 2(\bfitalpha ) \simeq 3.1527. This scheme has not appeared previously
in the literature.

Case s = 5. Now the composition

\psi 
[5]
\delta t

= \chi \alpha 1\delta t \circ \chi  \star 
\alpha 2\delta t \circ \chi \alpha 3\delta t \circ \chi  \star 

\alpha 4\delta t \circ \chi \alpha 5\delta t \circ \chi  \star 
\alpha 5\delta t \circ \chi \alpha 4\delta t \circ \chi  \star 

\alpha 3\delta t \circ \chi \alpha 2\delta t \circ \chi  \star 
\alpha 1\delta t

(3.15)D
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involves 21 maps when applied to a system separable into three parts. By carrying
out a similar analysis we conclude that the best solution according to the criterion
adopted is achieved when

\alpha 1 = \alpha 2 = \alpha 3 = \alpha 4 =
1

2(4 - 41/3)
, \alpha 5 =

1

2
 - 4\alpha 1,

which give \scrE 1(\bfitalpha ) \simeq 2.3159 and \scrE 2(\bfitalpha ) \simeq 2.6111.

Remark 3.3. This method also belongs to \scrG 2 since it can be written as

\psi \delta t = \phi \gamma \delta t \circ \phi \gamma \delta t \circ \phi \beta \delta t \circ \phi \gamma \delta t \circ \phi \gamma \delta t

with coefficients \gamma = 2\alpha 1, \beta = 2\alpha 5, originally proposed in [27].

Case s = 6. Analogously we have considered a composition involving three free
parameters and 25 maps:

\psi 
[6]
\delta t

= \chi \alpha 1\delta t \circ \chi  \star 
\alpha 2\delta t \circ \chi \alpha 3\delta t \circ \chi  \star 

\alpha 4\delta t \circ \chi \alpha 5\delta t \circ \chi  \star 
\alpha 6\delta t \circ \chi \alpha 6\delta t \circ \chi  \star 

\alpha 5\delta t \circ \chi \alpha 4\delta t(3.16)

\circ \chi  \star 
\alpha 3\delta t \circ \chi \alpha 2\delta t \circ \chi  \star 

\alpha 1\delta t .

A solution leading to small values of \scrE 1 and \scrE 2 is

\alpha 1 = \alpha 2 =
3

20
, \alpha 3 =

17

100
,

\alpha 4 =  - 0.2628463256938681137, \alpha 5 = 0.16217658484020533783,

\alpha 6 = 0.13066974085366277593

with \scrE 1(\bfitalpha ) \simeq 2.0513 and \scrE 2(\bfitalpha ) \simeq 2.4078. Notice how the values of \scrE 1(\bfitalpha ) and \scrE 2(\bfitalpha )
are reduced by considering additional stages. This particular scheme is also presented
here for the first time.

Remark 3.4. Although the optimization criterion we have adopted here usually
leads to good methods, one can find schemes in the literature with larger values of
\scrE 1 and \scrE 2 which are very efficient in practice. Thus, in particular, we mention the
fourth-order splitting method designed in [6] which, once written as a method in \scrG 1,
also involves s = 6 stages.

4. Numerical results for the Vlasov type equations. In this section, we
show some numerical results to illustrate the efficiency and performance of the meth-
ods previously derived. We focus on Vlasov applications by considering the Vlasov--
Maxwell system as well as Vlasov--HMF system.

4.1. Vlasov--Maxwell system. The composition methods introduced in the
previous sections can then be used to derive a global fourth-order method for the
Vlasov--Maxwell equation. As an example, the Yoshida (or triple-jump) method (s =
3) in the Vlasov--Maxwell context is written

\psi 
[3]
\delta t

= \chi \alpha 1\delta t \circ \chi  \star 
\alpha 2\delta t \circ \chi \alpha 3\delta t \circ \chi  \star 

\alpha 3\delta t \circ \chi \alpha 2\delta t \circ \chi  \star 
\alpha 1\delta t ,

with \alpha 1 = \alpha 2 = 1
2(2 - 21/3)

, \alpha 3 = 1
2  - 2\alpha 1, and where \chi \delta t and \chi 

 \star 
\delta t

are given by (3.3) and

(3.4), respectively. Then, if we denote by Fn an approximation at time tn = n\delta t, n \in 
\BbbN , of the Vlasov--Maxwell solution F (tn), we have Fn = (\psi 

[3]
\delta t
)n(F in), and Fn is a

fourth-order approximation of F (tn). The other fourth-order methods \psi 
[s]
\delta t
, s = 4, 5, 6,
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are defined by (3.14), (3.15), and (3.16) in subsection 3.5. We also define the standard

Strang splitting \psi 
[2]
\delta t

which, with our notation, is written

\psi 
[2]
\delta t

= \chi \delta t/2 \circ \chi 
 \star 
\delta t/2

= \varphi 
[\scrH E ]
\delta t/2

\circ \varphi [\scrH f ]

\delta t/2
\circ \varphi [\scrH B ]

\delta t/2
\circ \varphi [\scrH B ]

\delta t/2
\circ \varphi [\scrH f ]

\delta t/2
\circ \varphi [\scrH E ]

\delta t/2

= \varphi 
[\scrH E ]
\delta t/2

\circ \varphi [\scrH f ]

\delta t/2
\circ \varphi [\scrH B ]

\delta t
\circ \varphi [\scrH f ]

\delta t/2
\circ \varphi [\scrH E ]

\delta t/2
.

The Strang splitting for a decomposition into three parts involves five maps since, as
usual, the first and the last map can be concatenated.

We present some numerical results to illustrate the efficiency of the different

methods. First of all, we used the methods \psi 
[s]
\delta t
, s = 2, 3, 4, 5, 6. In this context, one

goal is to compare the new exact splitting for the rotation applied to the field \scrH B to

a standard Strang method. In the methods \psi 
[s]
\delta t
, the flow \varphi 

[\scrH B ]
\delta t

is then approximated

by the Strang splitting \scrT [\scrH B ]
\delta t

given by (2.10). This means that in this method, \chi \delta t

is now replaced by \~\chi \delta t defined by \~\chi \delta t = \varphi 
[\scrH E ]
\delta t

\circ \varphi [\scrH f ]
\delta t

\circ \scrT [\scrH B ]
\delta t

. The global Strang

splitting is then defined by \~\psi 
[2]
\delta t

with \~\psi 
[2]
\delta t

= \~\chi \delta t/2 \circ \~\chi  \star 
\delta t/2

, and the definition of \~\psi 
[s]
\delta t

for
s = 3, 4, 5, 6 follows directly. Let us remark that even if the magnetic part \scrH B is not

solved exactly in time, the global method \~\psi 
[s]
\delta t

still has the same order as \psi 
[s]
\delta t

(i.e.,
of order 2 for s = 2 or of order 4 for s = 3, 4, 5, 6). We then want to investigate the
impact of this approximation on the global error of the so-obtained splitting.

To do so, we consider the initial condition for (3.1),

f in(x1, v1, v2) =
1

\pi v2th
\surd 
Tr

e - (v2
1+v2

2/Tr)/v
2
th(1 + \alpha cos(kx1)),

and Bin(x1) = 10 + 3 cos(kx1), E
in
2 (x1) = 0. We consider \alpha = 10 - 4, k = 0.4, vth =

0.02, k = 0.4, and Tr = 12. The phase space domain is (x1, v1, v2) \in [0, 2\pi /k]\times [ - 1, 1]2

and the number of points is Nx = 8 in space and Nv = 513 per direction in velocity.
The runs are performed up to a final time T = 2 and different values of the time step
\delta t are considered between 10 - 3 to 0.4. The results are given in Figure 7, where we
have plotted the L\infty error on the total energy with respect to \delta t/M , where M is the
number of maps. The total energy (which is conserved with time at the continuous
level) is defined by
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Fig. 7. Efficiency diagrams obtained by different composition methods \psi 
[s]
\delta t
, s = 2, 3, 4, 5, 6 (left)

and \~\psi 
[s]
\delta t
, s = 2, 3, 4, 5, 6 (right) for the Vlasov--Maxwell system. The number of maps for each method

is indicated in parentheses.
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\scrH (t) =
1

2

\int 
L

| E| 2dx+
1

2

\int 
L

| B| 2dx+
1

2

\int 
L\times \BbbR 2

| v| 2fdvdx(4.1)

with L = [0, 2\pi /k], and the error we consider is

err := max
t\in [0,T ]

\bigm| \bigm| \bigm| \scrH (t) - \scrH (0)

\scrH (0)

\bigm| \bigm| \bigm| .(4.2)

Let us remark that other conserved quantities (like the L2 norm of f) may not be
affected by the use of high-order time integrators (see [15]).

First, one can see that the order of convergence is well recovered for all the
methods but some fourth-order methods present better efficiency. For instance, the
two methods corresponding to s = 5 and s = 6 are clearly the best and are much more
efficient than the triple jump method (s = 3) or the Strang one (s = 2) even if they
involve a larger number of maps. Second, we can observe than the error produced by

the methods \psi 
[s]
\delta t

(i.e., when the exact splitting is used for the part \scrH B) is smaller

than the error performed by the methods \~\psi 
[s]
\delta t

(i.e. when a Strang splitting is used for
the part \scrH B). Note that in Figure 7 the lines indicating the order are kept fixed. For

the Strang method the ratio between the error produced by \~\psi 
[2]
\delta t

and \psi 
[2]
\delta t

is about 2.5,

whereas the ratio between the error produced by \~\psi 
[5]
\delta t

and \psi 
[5]
\delta t

is about 6 (the same

ratio is observed between \~\psi 
[6]
\delta t

and \psi 
[6]
\delta t
). Let us remark that, for a given method, the

cost of a \~\psi 
[s]
\delta t

method is the same as that of a \psi 
[s]
\delta t

method.
We end this subsection by considering other splitting methods from the literature,

namely the splitting methods of the form (3.6) from [2] which assume that each
subpart is solved exactly, which is our case when the exact splitting is used for the
magnetic part. The results are displayed in Figure 8, where we have tested second-
order methods (AK 3-2 and AK 5-2 involve 9 maps), a fourth-order method (AK
11-4 involves 21 maps), and even a sixth-order method (AY 15-6 involves 29 maps).

We refer to [2] for more details on these methods. As previously we also added \psi 
[2]
\delta t

(second order) and \psi 
[5]
\delta t

(fourth order) for comparison, whereas slopes 2 and 4 are the
same as in Figure 7. First, we observe that AK 3-2 is the best second-order method.
The third-order PP method is not very attractive in this context compared to second-

order methods. Second, among the two fourth-order methods (AK 11-4 and \psi 
[5]
\delta t
), the
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Fig. 8. Efficiency diagrams obtained by different methods from [2] and \psi 
[2]
\delta t

, \psi 
[5]
\delta t

for the Vlasov--
Maxwell system. The order lines ``slope 2"" and ``slope 4"" are the same as in Figure 7. The number
of maps for each method is indicated in parentheses.
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method \psi 
[5]
\delta t

offers better efficiency since the error is about 5 times smaller. Finally,
the method AY 15-6 offers sixth-order accuracy but this extra accuracy is apparent
only for very small time steps.

4.2. Vlasov--Maxwell system: Long time test. We now present a test to
highlight the fact that the new methods are able to capture the long time dynamics
of the Vlasov--Maxwell solution. Then, we consider the same initial condition as in
the previous test,

f in(x1, v1, v2) =
1

2\pi \beta 
e - v2

2/\beta 
\Bigl[ 
e - (v1 - 0.1)2/\beta + e - (v1+0.3)2/\beta 

\Bigr] 
,

where (x1, v1, v2) \in [0, 2\pi ]\times [ - 1, 1]2 and we have chosen \beta = 0.002. The electric fields
Ein

1 and Ein
2 are set to zero, whereas the magnetic field is prescribed as Bin(x1) =

1 + 0.0001 sin(x1). The number of points in space is Nx = 32, whereas we took
Nv = 257 points per velocity direction.

We compare the \psi 
[5]
\delta t

method (which is the best method according to the previous

tests) with the two second-order splittings \psi 
[2]
\delta t

(referred to as s = 2 new) and \~\psi 
[2]
\delta t

(referred as Strang). Let us recall that these two second-order splittings differ only in
the solving of the magnetic part. The time step is chosen as \delta t = 0.125 or \delta t = 0.025

so that we will compare \psi 
[5]
\delta t

and \psi 
[2]
\delta t

at a fixed computational cost and the final time
is tf = 500.

In Figure 9 (left), we plot the time evolution of the relative total energy given
by (4.2) for the two second-order splittings with a small time step (\delta t = 0.025). The
cost of these two methods is the same, but we can see that the relative total energy is

better preserved for the \psi 
[2]
\delta t

method (about 2\times 10 - 9) compared to the standard \~\psi 
[2]
\delta t

method (about 2\times 10 - 6). On the right part of Figure 9, we compare the methods for

which the rotation is solved exactly, namely \psi 
[2]
\delta t

(with \delta t = 0.025 and 0.125) and \psi 
[5]
\delta t

(with \delta t = 0.125). Let us mention that \psi 
[2]
\delta t

for \delta t = 0.025 and \psi 
[5]
\delta t

for \delta t = 0.125 have
the same number of stages and so as the same computational cost. We can observe

that the high-order method \psi 
[5]
\delta t

preserves very well the total energy (about 6\times 10 - 12),
which confirms the results obtained in the previous subsection.

Finally, the time history of first mode of E1 is plotted in Figure 10, for \psi 
[2]
\delta t

and \psi 
[5]
\delta t

methods, with \delta t = 0.125. We can observe that after a linear phase during which the
amplitude of the mode grows exponentially, a saturation phase is well captured by the
two methods, even if the saturation level is not the same (see the zoomed inset figure

for t \in [400, 500]). Refining the time step by considering \delta t = 0.025 enables the \psi 
[2]
\delta t

Fig. 9. Time history of the relative total energy. Left: \psi 
[2]
\delta t

and \~\psi 
[2]
\delta t

with \delta t = 0.025. Right:

\psi 
[2]
\delta t

with \delta t = 0.125 and \delta t = 0.025, \psi 
[5]
\delta t

with \delta t = 0.125.
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Fig. 10. Time history of the first mode of E1 (semi-log scale): \psi 
[2]
\delta t

and \psi 
[5]
\delta t

with \delta t = 0.125.
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Fig. 11. Velocity dependence of
\int 
f(t = 500, x, vx, vy)dx at the final time, using \psi 

[5]
\delta t

with
\delta t = 0.125.

method to recover the results obtained by \psi 
[5]
\delta t
. In Figure 11 the velocity dependence of\int 2\pi 

0
f(t = 500, x, vx, vy)dx is plotted. The use of Fourier interpolation in the velocity

directions may induce some noise that contaminates the numerical solution (see [22])
and other strategies can be used such as high-order piecewise polynomial interpolation
(see [10]). As illustrated in Figure 11, this spurious effect is not too important in our
case.

4.3. Vlasov-HMF system. Our goal is to solve numerically the Vlasov-HMF
model satisfied by f(t, x, v), (x, v) \in L\times \BbbR , with L = \BbbR /2\pi \BbbZ (see [21])

\partial tf + \{ f,H[f ]\} = 0,(4.3)

where \{ f, g\} = \partial xf\partial vg  - \partial vf\partial xg and H[f ] is given by H[f ] = v2

2  - \Phi [f ](x). Finally,
the potential is defined by

\Phi [f ](x) = cosx

\int 
L\times \BbbR 

cos(y)f(y, u)dydu + sinx

\int 
L\times \BbbR 

sin(y)f(y, u)dydu.(4.4)

We consider the following stationary solution:

feq(x, v) = \gamma e
 - \beta 

\Bigl( 
v2

2  - M0 cos x
\Bigr) 
with M0 =

\int 
L\times \BbbR 

cos(y)feq(y, u)dydu,(4.5)

where \gamma , \beta ,M0 \in \BbbR will be explicitly given below. Following [21], the long time
behavior of (4.3) is driven by the linearized Hamiltonian part, i.e., \partial tf+\{ f,H[feq]\} =

0, with H[feq] = v2

2  - M0 cos(x). We recognize the pendulum Hamiltonian for which a
slight modification of the new splitting is able to capture the rotation phenomena with
high accuracy compare to standard Strang splitting (see [4]). In this HMF context,
the material introduced before has to be slightly modified.

First, let us introduce the discretization of the phase space L\times [ - vmax, vmax], with
vmax > 0 a truncation of the velocity direction. We consider \BbbG x := hx J0, Nx  - 1K
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the space grid (with hx = L/Nx the stepsize and Nx \in \BbbN \ast the number of points)
and \BbbG v := hv J - \lfloor (Nv  - 1)/2\rfloor , \lfloor Nv/2\rfloor K the speed grid (with hv = 2vmax/Nv the
stepsize and Nv \in \BbbN \ast the number of points). We also introduce the set of discrete

frequencies: \widehat \BbbG x = \eta x J - \lfloor (Nx  - 1)/2\rfloor , \lfloor Nx/2\rfloor K and \widehat \BbbG v = \eta v J - \lfloor (Nv  - 1)/2\rfloor , \lfloor Nv/2\rfloor K
with \eta x = 2\pi /L and \eta v = \pi /vmax. Then, we define the discrete partial Fourier
transforms

\scrF 1 :

\left\{   \BbbC 
\BbbG x\times \BbbG v , \rightarrow \BbbC \widehat \BbbG x\times \BbbG v ,

\bfitu \mapsto \rightarrow hx
\sum 

g1\in \BbbG x

\bfitu g1,g2 e
 - ig1\xi 1 , and \scrF 2 :

\left\{   \BbbC 
\BbbG x\times \BbbG v \rightarrow \BbbC \BbbG x\times \widehat \BbbG v ,

\bfitu \mapsto \rightarrow hv
\sum 

g2\in \BbbG v

\bfitu g1,g2 e
 - ig2\xi 2 ,

whereas the shears are now defined by

\scrS \alpha 
1 :

\biggl\{ 
\BbbC \BbbG x\times \BbbG v , \rightarrow \BbbC \BbbG x\times \BbbG v ,

\bfitu \mapsto \rightarrow \scrF  - 1
1

\bigl[ 
ei\alpha \xi 1g2\scrF 1 \bfitu 

\bigr] 
,

and \widetilde \scrS \alpha 
2 :

\biggl\{ 
\BbbC \BbbG x\times \BbbG v , \rightarrow \BbbC \BbbG x\times \BbbG v ,

\bfitu \mapsto \rightarrow \scrF  - 1
2

\bigl[ 
ei\alpha \xi 2E[\bfitu ]g1\scrF 2\bfitu 

\bigr] 
,

where E[\bfitu ]g1 is deduced from the relation E[\bfitu ](x) =  - \partial x\Phi [\bfitu ](x) and (4.4)

E[\bfitu ]g1 = sin(g1hx)hxhv
\sum 

(g1,g2)\in \BbbG x\times \BbbG v

cos(g1hx)\bfitu g1,g2

 - cos(g1hx)hxhv
\sum 

(g1,g2)\in \BbbG x\times \BbbG v

sin(g1hx)\bfitu g1,g2 .(4.6)

Then, at time tn = n\delta t, we denote by fn an approximation of the solution f(tn)

on the phase space grid computed by the Strang splitting \widetilde \scrT \delta t and the new splitting\widetilde \scrM \delta t which are defined by

fn+1 = \widetilde \scrT \delta t fn := \scrS  - \delta t/2
1

\widetilde \scrS \delta t
2 \scrS  - \delta t/2

1 fn (Strang),

fn+1 = \widetilde \scrM \delta t f
n

:= \scrS  - tc tan(\delta t/(2tc))
1

\widetilde \scrS tc sin(\delta t/tc)
2 \scrS  - tc tan(\delta t/(2tc))

1 fn (New),

(4.7)

where f0 := f in, and tc = 1\surd 
M0

is the characteristic time of the Vlasov-HMF model

which has been introduced to capture the correct angular velocity. Let us remark that
the electric field E[f ] has to be solved using (4.6) before the shear \widetilde \scrS \alpha 

2 in the splittings
defined previously.

To evaluate the performance of the new splitting compare to the Strang one, we
consider an initial condition f in as a perturbation of the equilibrium solution (4.5)
(with \beta = 10,M0 = 0.9455421864232981 and \alpha = 0.0001194365987897421)

f in(x, v) = feq(x, v)(1 + \varepsilon cos(x)), (x, v) \in [ - \pi , \pi ]\times \BbbR ,

with \varepsilon = 10 - 3. We consider a truncated velocity domain of [ - 8, 8], and the number
of points in the spatial direction is Nx = 128, whereas we considered Nv = 256 points
in the velocity direction, and the final time is T = 25. Note that the splitting can also
be coupled to a semi-Lagrangian method; the shears \scrS 1 and \widetilde \scrS 2 have to be modified
accordingly (see [5], for instance).

We look at the L\infty error between a reference distribution function (obtained with
the new splitting with a small time step \delta t = T/1000) and the one obtained by Strang
or new splitting given by (4.7) (with tc = 1.0283940255) for different time steps
\delta t \in \{ T/50, T/100, T/150, T/200, T/250\} . The results are displayed in Figure 12 in
log-log scale. First we observe that, as expected, the two methods are second-order
accurate in time. But, one can remark that the error produced by the new splitting is
much smaller than the error produced by the Strang splitting, at the same cost (the
number of maps is the same for the two methods).
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Fig. 12. Error as a function of the number of iterations for the HMF-Poisson system. Com-
parison of the Strang splitting and the new splitting.

5. Conclusion. In this work, we have studied a directional splitting which pre-
serves exactly the rotations and we have applied it to the PDE context. A careful
numerical analysis of this splitting coupled with spectral interpolation techniques has
been performed. These results are illustrated by some numerical experiments. Then,
this step serves as a building block of a splitting for the Vlasov--Maxwell system. In-
deed, this system can be split into three parts which, thanks to this new splitting,
can all be solved exactly. New high-order composition methods are then designed
to accurately and efficiently solve the full Vlasov--Maxwell system. Numerical results
show the good behavior of these methods.
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