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OPTIMIZED HIGH-ORDER SPLITTING METHODS
FOR SOME CLASSES OF PARABOLIC EQUATIONS

S. BLANES, F. CASAS, P. CHARTIER, AND A. MURUA

ABSTRACT. We are concerned with the numerical solution obtained by splitting
methods of certain parabolic partial differential equations. Splitting schemes
of order higher than two with real coefficients necessarily involve negative
coefficients. It has been demonstrated that this second-order barrier can be
overcome by using splitting methods with complez-valued coefficients (with
positive real parts). In this way, methods of orders 3 to 14 by using the
Suzuki—Yoshida triple (and quadruple) jump composition procedure have been
explicitly built. Here we reconsider this technique and show that it is inherently
bounded to order 14 and clearly sub-optimal with respect to error constants.
As an alternative, we solve directly the algebraic equations arising from the
order conditions and construct methods of orders 6 and 8 that are the most
accurate ones available at present time, even when low accuracies are desired.
We also show that, in the general case, 14 is not an order barrier for splitting
methods with complex coefficients with positive real part by building explicitly
a method of order 16 as a composition of methods of order 8.

1. INTRODUCTION

In this paper, we consider linear evolution equations of the form

du
dt
where the (possibly unbounded) operators A, B and A+ B generate C° semi-groups
for positive t over a finite or infinite Banach space X. Equations of this form are
encountered in the context of parabolic partial differential equations, a prominent
example being the inhomogeneous heat equation

ou

ot
where t > 0, z € R? or 2 € T? and A denotes the Laplacian in z.

(1.1) (t) = Au(t) + Bu(t),  u(0) = uo,

(x,t) = Au(z, t) + V(z)u(z,t),
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1560 S. BLANES, F. CASAS, P. CHARTIER, AND A. MURUA

A method of choice for solving numerically (II) consists in advancing the solu-
tion alternatively along the exact (or numerical) solutions of the two problems

du du

—(t) = Au(t d —

(1) =Au(t)  an I

Upon using an appropriate sequence of steps, high-order approximations can be
obtained—for instance, with exact flows—as

(t) = Bu(t).

(1.2) W(h) = WoB gharA ghbiB . ghas A ght. B

The simplest example within this class is the Lie-Trotter splitting
(1.3) el ehB or ehB e

which is a first order approximation to the solution of (IIl), while the symmetrized
version

(1.4) S(h) = eh/2A ghB gh/24 or S(h) = eh/2B ghA gh/2B

is referred to as Strang splitting and is an approximation of order 2.

The application of splitting methods to evolutionary partial differential equa-
tions of parabolic or mixed hyperbolic-parabolic type constitutes a very active field
of research. For this class of problems it makes sense to split the spatial differential
operator, each part corresponding to a different physical contribution (e.g., reaction
and diffusion). Although the formal analysis of splitting methods in this setting
can be carried out by power series expansions (as in the case of ordinary differential
equations), several fundamental difficulties arise, however, when establishing con-
vergence and rigorous error bounds for unbounded operators [HKLR10]. Partial
results exist for hyperbolic problems [TT95] [Tang98, [HKLR10], parabolic problems
[DS02, [HV03] and for the Schrédinger equation [JLOO, [Lub08], even for high order
splitting methods [Tal0g].

In [HOQ9a], it has been established that, under the two conditions stated below,
a splitting method of the form ([L2)) is of order p for problem (I1]) if and only if it
is of order p for ordinary differential equations in finite dimension. In other words,
if and only if the difference W(h) — e A+5) admits a formal expansion of the form

(1.5) (h) — " ATE) = PP+ WP E, s+

The two referred conditions write (see [HO09a] for a complete exposition):

)

(1) Semi-group property: A, B and A+ B generate C° semi-groups on X and,
for all positive ¢,

e 4 < eat, Bl <ot and [l AFB) < ot

for some positive constants w4, wp and w.
(2) Smoothness property: For any pair of multi-indices (i1,...,4,) and
(J1y--eydm) with iy +- - +ipm+ 41+ +Jm =p+1, and for all ¢ € [0, 7],

|AB B ... Atm BIm HATB) 0| < C
for a positive constant C'.

However, designing high-order splitting methods for (I1l) is not as straightforward
as it might seem at first glance. As a matter of fact, the operators A and B are only
assumed to generate C° semi-groups (and not groups). This means in particular
that the flows e'4 and/or e may not be defined for negative times (this is in-
deed the case, for instance, for the Laplacian operator) and this prevents the use of
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OPTIMIZED HIGH-ORDER SPLITTING METHODS 1561

methods which embed negative coefficients. Given that splitting methods with real
coefficients must have some of their coefficients a; and b; negativ to achieve order
3 or more, this seems to indicate, as it has been believed for a long time within the
numerical analysis community, that it is only possible to apply exponential split-
ting methods of at most order p = 2. In order to circumvent this order-barrier,
the papers [HO09b|] and [CCDV09] simultaneously introduced complez-valued coef-
ficientsq with positive real parts. It can indeed be checked in many situations that
the propagators e* and e*Z are still well defined in a reasonable distribution sense
for z € C, provided that R(z) > 0. Using this extension from the real line to the
complex plane, the authors of [HO09b] and [CCDV09| built up methods of orders 3
to 14 by considering a technique known as triple-jump composition] that was made
popular by a series of authors: Creutz & Gocksch [CG89], Forest [For89], Suzuki
[Suz90] and Yoshida [Yos90].

In this work, we continue the search for new methods with complex coefficients
with positive real parts. Eventually, our objective is to show that, compared to the
methods built in [HO09b] and [CCDVQ9] by applying the triple-jump (or quadruple-
jump) procedure, it is possible to construct more efficient methods and also of
higher order by solving directly the polynomial equations arising from the order
conditions. In particular, we construct methods of order 6 and 8 with minimal
local error constants among the methods with minimal number of stages. We also
construct a method of order 16, obtained as a composition based on an appropriate
eighth-order splitting method.

Here we are particularly interested in obtaining new splitting methods for
reaction-diffusion equations. These constitute mathematical models that describe
how the population of one or several species distributed in space evolves under
the action of two concurrent phenomena: reaction between species in which preda-
tors eat prey and diffusion, which makes the species spread out in space@. From a
mathematical point of view, they belong to the class of semi-linear parabolic partial
differential equations and can be represented in the general form

% = DAu+ F(u),
where each component of the vector u(z,t) € R? represents the population of one
species, D is the real diagonal matrix of diffusion coefficients and F' accounts for
all local interactions between speciesE Strictly speaking, the theoretical framework
introduced in [HO09b] does not cover this situation if F' is nonlinear, so that (apart

1The existence of at least one negative coefficient was shown in [She89}[Suz91], and the existence
of a negative coefficient for both operators was proved in [GK96]. An elementary proof can be
found in [BCO3].

2Methods with complex-valued coefficients have also been used in a similar context [Ros63] or
in celestial mechanics [Cha03].

3And its generalization to quadruple-jump.

4 Apart from biology and ecology, systems of this sort also appear in chemistry (hence the term
reaction), geology and physics.

5The choice F(u) = u(1 — u) yields Fisher’s equation and is used to describe the spreading of
biological populations; the choice F(u) = u(1 — u?) describes Rayleigh-Benard convection; the
choice F(u) = u(l — u)(u — o) with 0 < @ < 1 arises in combustion theory and is referred to as
the Zeldovich equation.
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1562 S. BLANES, F. CASAS, P. CHARTIER, AND A. MURUA

from Section [ where we successfully integrate numerically an example with non-
linear F') we will think of F' as being linear. The important feature of A = DA
here is that it has a real spectrum; hence, any splitting method involving complex
steps with positive real part is suitable for that class of problems. In principle,
one could even consider splitting methods with a;’s having positive real part and
unconstrained complex b;’s.

It may be worth mentioning that the size of the arguments of the a; coefficients
of the splitting method is a critical factor when the diffusion operator involves a
complex number, for instance, an equation of the form

ou
(1.6) s = 0Au+ F(u),

where 4 is a complex number with (§) > 0. The choice F(u) = pgu®+ pu+piu+
o is known as the cubic Ginzburg-Landau equation [F'T88]. In this situation, the
values of the a; := arg(d) + arg(a;) determine whether the splitting method makes
sense for this specific value of §. If for all i = 1,...,s, a; € [, +7F], then the
method is well defined. In order for the method to be applicable to such class of
equations, it would make sense to try to minimize the value of max;—1 . |arg(a;)|.

In this work, however, we focus on the case where the operator A has a real
spectrum, and thus we will only require that |arg(a;)| < 7/2 (i.e., R(a;) > 0)
while minimizing the local error coefficients. In this sense, we have observed that
the coefficients of accurate splitting methods with R(a;) > 0 tend to have also b;
coeflicients with positive real parts.

The plan of the paper is the following. In Section 2, we shall prove that if an s-
jump construction is carried out from a basic symmetric second-order method, it is
bounded to order 14 and no more and we will further justify why solving directly the
system of order conditions leads to more efficient methods. In Section[B] we solve the
corresponding order conditions of methods based on compositions of second-order
integrators and construct several splitting methods whose coefficients have positive
real part. In particular, in Subsection [3.3] we present splitting methods of orders 6
and 8, obtained as a composition scheme with Strang splitting as basic integrator.
In addition, with the aim of showing that 14 is not an order barrier in general, we
have built explicitly a method of order 16 as a composition of methods of order
8, which in turn is obtained by composing the second-order Strang splitting. In
Section [ we describe the implementation of the various methods obtained in this
paper and show their efficiency as compared to already available methods on two
test problems. Finally, Section [B] contains some discussion and concluding remarks.

2. AN ORDER BARRIER FOR THE $-JUMP CONSTRUCTION

A simple and very fruitful technique to build high-order methods is to consider
compositions of low-order ones with fractional time steps. In this way, numerical
integrators of arbitrarily high order can be obtained. For splitting methods aimed
to integrate problems of the form ([I)), it is necessary, however, that the coefficients
have positive real part. The procedure has been carried out in [CCDV09, [HO09D],
where composition methods up to order 14 have been constructed. We shall prove
here that 14 constitutes indeed an order barrier for this kind of approach. In other
words, the composition technique used in [CCDVQ9, [HO09b] does not allow for the
construction of methods having all of their coefficients in C4 := {z € C: R(z) >
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0} with orders strictly greater than 14. With this goal in mind we consider the
following two families of methods:

Family I. Given a method of order p, ®I(h) = "A+B) - O(hP+1) a sequence
of methods of orders p+1,p+2,... can be defined recursively by the compositions

Mq
(2.1)  ®lrtd(p) = Hq)[p+q—1] (agih) = @+t (a, 1 h) ... @lrtell (tgum, ),
i=1

where for all ¢ > 1,

(V1<i<mg, ag:;#0), Za%—l and Zozp+q—0

(Hereafter, we will interpret the product symbol from left to right). Notice that if
p + q is even, the second condition has only complex solutions.

Family II. Given a symmetric method of order 2p,‘i>[2p}(h), a sequence of
methods of orders 2(p+1), 2(p+2), . .. can be defined recursively by the symmetric
compositions

(2.2) Vg>1, @[Z(Mq)](h) - H d12(p+9)—-2] (aq.ih)
i=1
where agm,+1-i = g, 1 =1,2,..., and for all ¢ > 1,

(V1<i<mg aq;#0), Zaq, =1 and Za2(p+q

Methods of this class with real coefficients have been constructed by Creutz &
Gocksch [CG89], Suzuki [Suz90] and Yoshida [Yos90]. However, the second con-
dition clearly indicates that at least one of the coefficients must be negative. In
contrast, there exist many complex solutions with coefficients in C..

Generally speaking, starting from ®*(h), the (p + 1)-th member of Family T is
of the form

(2.3) o) = ][ [I((Hﬁwwwuwm%m>J

ip=1 \ip_1=1 i1=1

and has coefficients

(24) Hamj lgilgml,...,lgipgmp.

A similar expression holds, of course, for methods of Family II, starting from

®2(h). Symmetric compositions for the cases m; = mg = --- = mp, = 3 and
mi; = mg = - -+ = my = 4, correspond to the triple and quadruple jump techniques,
respectively.

Lemma 2.1. Let ®(h) be a consistent method (i.e., a method of order p > 1) and
assume that the method

(2.5) MM:H@@M
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FIGURE 1. The enveloping sectors of {z1,...,2x} C C4 and of
{#],...,2.} C C (for r = 2).

is also consistent (i.e., Y, a; = 1). If there exists k, 1 < k <1, such that R®(oy) < 0,
then any consistent method of the form

m m !
(2.6) H U(Bh) = H (H @(ﬁjaih)>

has at least one coefficient Bjax, 1 < j < m, such that R(B;ar) < 0.

Proof. By consistency one has Y-, ; = 1, so that

Z?R ﬂjak Zﬁ]ak = akZﬂJ —§Rak < 0.
j=1

This implies the statement. O

Lemma 2.2. For k > 2 and r > 2, consider (z1,...,2,) € (C4)" such that
Zk =0,2z #0 fori=1,..., k. Then we have

zlz

=13

,max Arg(z;) — I{nnkArg(zz) >

Proof. All the z;’s belong to the sector K,(0) = {z € C: |0 — Arg(z)| < 0} with

ERREE} ERERE)

1
o= ( max Arg(z) + mlnkArg(zZ)>

1=1,.. EREEE)

and 1
0= 3 (i max Arg(z;) — I{llnkArg(ZZ)> )

where Arg is the principal value of the argument (see the left picture of Figure
). Now, assume that § < J-. Then, all the 2{’s belong to K, (rf), which, since
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rf < 3, is a convex set. This implies that Zle 2" also belongs to K,,(r60) (see the
right picture of Figure[Il). The inequality 70 < § being strict and the z;’s non-zero,

ko r

we have furthermore ), | 27 # 0, which contradicts the assumption. The result

follows. O

Theorem 2.3. (i) Starting from a first-order method ®M(h), all methods ®P+1(h)
of order p+1, p=3,4,... from Family I have at least one coefficient with negative
real part.

(ii) Starting from a second-order symmetric method ®2(h), all methods ®2P+2(h)
of order 2p+2, p =17,8, ... from Family II have at least one coefficient with negative
real part.

Proof. We prove at once the two assertions. We first notice that, according to
Lemma 1] if method ®P!(h) of Family I (respectively, method ®[7/(h) of Family
I1), has a coefficient with negative real part, then all subsequent methods ®P+4)(h),
g > 1, of Family I (respectively, methods &)[Q(Hq)](h) of Family II), also have a
coefficient with negative real part. Hence, we assume that all methods q)[q*”(h),
q¢=1,...,p from Family I (respectively, all methods ®292(h) of Family II), have
all their coefficients in C;. Using Lemma we have

. T
Vg=1,...,p, max Arg(a,;)— min Arg(ag;) > —7,
i=1,...,mq i=1,...,mq q =+ 1
respectively,
Vg =1 Arg(o.:) in Arg(ags) > —
=1,... max rg(ag ;) — min rg(oag ;
q ’ Py i=1,...,mq 8l Aq.i i=1,...,mq 8\Qq.i) = 2q + 1’
so that
D P
max Ar H o | — min Ar H TR
1<iz<ma,..,1<ip <my & i—1 H 1<ii <my,...,1<i,<my, & i—1 Y ’
j= j=
>Z 4+ L
=9 p + 1;
respectively,
p p
max Arg H o | — min Arg H Qg
1<i; <my,..o1<ip <m, L 1<y Sma,...,1<i, <my, L
j= j=

>2 44 L
-3 2p+1°

Now, since %—I— % —l—% > 1, p = 3 in the first case and thus the first statement follows.
For Family II, since % + % 4+ 4 % > 1, then p = 7, thus leading to the second
statement. O

Remark 2.4. No method of Family I with coefficients in C; can have an order
strictly greater than 3. Such methods of order 3 have been constructed in [HO09D).
Similarly, no method of Family II with coefficients in C; can have an order strictly
greater than 14. Such methods with orders up to 14 have been constructed in
[CCDV09, [HOO9b|. For instance, let us consider the quadruple jump composition

(2.7) 2P+ (p) = o1l (a, 1h) DRP (a2 h) DI (0, o h) ®PP (1 1),
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_ 2p+1 2p+1 _ . .
where ;1 +ap2 =1/2 and o} + o'y = 0. This system has p solutions (and

their complex conjugate). The solution with minimal argument is, as noticed in
[CCDVQ9, [HO09b),

1 ) sin (—21:11) ~
M1 =7 1 +Z—W ) Qp2 = Qp,1
1+ cos (m)
(and its complex conjugate). It is straightforward to verify that arg(a, 1) = m
and arg(ap,2) = — 35,77y, so that
T
arg(ap,1) — arg(ap,2) = Bl

Comparing with the proof of Theorem 23] we observe that the bounds obtained
there are sharp since a family of methods do exist, satisfying the equality.

Remark 2.5. It s, however, possible to construct a composition method with all
coeflicients having positive real part of order strictly greater than 14 directly from
a symmetric second-order method. For example, in Subsection B.3] we present a
new method of sixteenth-order built as

21 15
(2.8) o) = [[ @M (esh),  with  ®B(n) = J] @ (8;n)

i=1 j=1
and the coefficients satisfying R(a;5;) > 0foralli=1,...,21, j =1,...,15, with
Qoo—i = ay, Pre—j = B, 4,5 = 1,2,.... Here, ®lI(h) is a symmetric composition of
symmetric second-order methods, but it is not a composition of methods of order
4 or 6, and similarly for ®['6/(h), which is not a composition of methods of orders
10, 12 or 14.

Theorem 2.6. Splitting methods of the class [(L2)) with R(a;) > 0 exist at least up
to order 44.

Proof. In [CCDV09), a fourth-order method was obtained with a; € R*. In a simi-
lar way, we have also built a sixth-order scheme with a; € R (whose coefficients can
be found at http://www.gicas.uji.es/Research/splitting-complex.html).
Using this as the basic method in the quadruple jump (27) with coefficients chosen
with the minimal argument and, since

T -
7 43 7 45

we conclude that all methods obtained up to order 44 will satisfy that $(a;) > 0. O

Remark 2.7. The question of the existence of splitting schemes at any order with
R(a;) > 0 still remains open.

3. SPLITTING METHODS WITH ALL COEFFICIENTS HAVING POSITIVE REAL PART

3.1. Order conditions and leading terms of local error. We have seen that
the composition technique to construct high-order methods inevitably leads to an
order barrier. In addition, the resulting methods require a large number of evalu-
ations (i.e., 3"~ or 4"~ ! evaluations to get order 2n using the triple or quadruple
jump, respectively) and usually have large truncation errors. In this section we
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show that, as with real coefficients, it is indeed possible to build very efficient high-
order splitting methods whose coefficients have positive real part by solving directly
the order conditions necessary to achieve a given order p. These are, roughly speak-
ing, large systems of polynomial equations in the coefficients a;, b; of the method
([T2), arising by requiring that the formal expansion of the method satisfies (L5
for arbitrary non-commuting operators A and B.

Different (but equivalent) formulations of such order conditions exist in the lit-
erature [HLWO06]. Among them, the one using Lyndon multi-indices is particularly
appealing. It was first introduced in [CMQ9] (see also [BCMO08]) and can be con-
sidered as a variant of the classical treatment obtained in [MSS99).

This analysis shows that the number of order conditions for general splitting
methods of the form (L[2) grows very rapidly with the order p, even when one
considers only symmetric methods. For instance, there are 26 independent eighth-
order conditions and 82 tenth-order conditions for a consistent symmetric splitting
method. It makes sense, then, to examine alternatives to achieve order higher than
six. This can be accomplished by taking compositions of a basic symmetric method
of even-order. In particular, if we consider any of the two versions of Strang splitting
(C4) as the basic method S(h), then, for each v = (71,...,7s) € C°,

(3.1) U(h) = S(nh)---S(ysh)

will be a new splitting method of the form ([2)). Now the consistency condition
reads

(3.2) Mm+-+y=1L

As for the additional conditions to attain order p, these can be obtained by gener-
alizing the treatment done in [MSS99]. Splitting methods with very high-order can
be constructed as (B.1)) by considering as basic method S(h) a symmetric method of
even order 2q > 2. In that case, it can be shown that the corresponding number of
order conditions is considerably reduced with respect to (L2)). Thus, for instance,
if S(h) is a symmetric splitting method of order eight, a method (B satisfying
the consistency condition ([3:2) and the symmetry condition

(3.3) Vs—j+1 = Vi 1<j5<s

only needs to satisfy 10 additional conditions to attain order sixteen.

3.2. Leading term of the local error. To construct splitting methods of a given
order p within a family of schemes, we choose the number s of stages in such a
way that the number of unknowns equals the number of order conditions, so that
one typically has a finite number of isolated (real or complex) solutions, each of
them leading to a different splitting method. Among them, we will be interested
in methods such that, either a; > 0 (and each b; are arbitrary complex numbers)
or R(a;) > 0 and R(b;) > 0. The relevant question at this point is how to choose
the “best” solution in the set of all solutions satisfying the required conditions.
It is generally accepted that good splitting methods must have small coefficients
a;,b;. Methods with large coefficients tend to show bad performance in general,
which is particularly true when relatively long time-steps h are used. In addition,
as mentioned in the introduction, when applying splitting methods to the class of
problems considered here, the arguments of the complex coefficients a;, b; must also
be taken into account.
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In order to choose the best scheme among two methods with coefficients of similar
size included in sectors with similar angle, we analyze the leading term of the local
error of the splitting method. If (L2) is of order p, then we formally have that

U(h) — MD)W, O,

Fpi =Y () ADBE Al e,
i1+ Fizm=p+1

where v = (y1,...,7s) is given in terms of the original coefficients a;, b; of the
integrator by

a5 = Vi, bj—1= —%71;— R
(70 = Ys+1 = 0) and each v;, . ;, () is a linear combination of polynomials in -y
[BCMOS].

Incorporating that into the results in [HOQ9b|, it can be shown that, if the
smoothness assumption stated in the introduction is increased from p + 1 to p + 2,
then for sufficiently small h, the local error is dominated by ||hP*1E, 1ug]|.

Our strategy to select a suitable method among all possible choices is then the
following: first choose a subset of solutions with reasonably small maximum norm
of the coefficient vector (y1,...,7s), and then, among them, choose the one that
minimizes the norm

(34) Z |Ui1“'i2m (’7)|

i1+ Fizm =pt1

of the coefficients of the leading term of the local error. This seems reasonable if one
is interested in choosing a splitting method that works fine for arbitrary operators
A and B satisfying the semi-group and smoothness conditions mentioned in the
introduction. Of course, this does not guarantee that a method with a smaller
value of (34) will be more precise for any A and B than another method with a
larger value of (34). However, we have observed in practice when solving the order
conditions of different families of splitting methods, that the solution that minimizes
([B) tend to have smaller values of most (or even all) coefficients |v;, ...;,, ()| when
compared to a solution having a larger norm (34)) of the coefficients of the leading
term of the local error.

When A and B are operators in a real Banach space X, then it makes sense to
compute the approximations u, = u(ty), as un, = R(V(h))u,—1. In that case, the
argument above holds with W(h) replaced by \fl(h) = R(V(h)) and the local error
coefficients v;, .. 4,,. () replaced by R(vi, ... i, (7). In that case, (34) should be
replaced by

(3.5) Yo R ian ()

i Fizn =p+1

as a general measure of leading term of the local error.
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3.3. High-order splitting methods obtained as a composition of simpler
methods.

Order 6. We first consider sixth-order symmetric splitting methods obtained as a
composition [BI]) of the Strang splitting (L)) as the basic method. In this case the
coefficients 7; must satisfy three order conditions, in addition to the symmetry (3.3)
and consistency requirements, to achieve order six. We thus take s = 7, so that we
have three equations and three unknowns. Such a system of polynomial equations
has 39 solutions in the complex domain (three real solutions among them), 12 of
them giving a splitting method with coefficients of positive real part. According to
the criteria described in Subsection B.2] we arrive at the scheme

(3.6) m1 =77 = 0.116900037554661284389 + 0.043428254616060341762:
Y2 =7 = 0.12955910128208826275 — 0.123989612188092593303,
3 =7 = 0.18653249281213381780 + 0.003107430710072675341,

v4 = 0.134016736702233270122 + 0.154907853723919152396%.

This method turns out to correspond to one of those obtained by Chambers (see
Table 4 in [Cha03]).

Order 8. For consistent symmetric methods B of order eight, we have seven
order conditions. By taking s = 15 stages, one ends up with a system of seven
polynomial equations and seven unknowns. We have performed an extensive nu-
merical search of solutions with small norm, finding 326 complex solutions. Among
them, 162 lead to splitting methods whose coefficients possess positive real part.
The best method, according to the criteria established in Subsection B2 is

(3.7) 1 =m5 = 0.053475778387618596606 + 0.0061693563400795325104,
Y2 =714 = 0.041276342845804256647 — 0.0699485743907078149511,

v3 =73 = 0.086533558604675710289 — 0.0231125016369148743841,

Y4 =712 = 0.079648855663021043369 + 0.0497804954556543381241,

s =711 = 0.069981052846323122899 — 0.052623937841590541286¢,

Y6 =7v10 = 0.087295480759955219242 + 0.0100352686446887339501,

y7r =7 = 0.042812886419632082126 + 0.0760594564588435238621,

s = 0.077952088945939937643 + 0.007280873939894204350¢.

Order 16. Motivated by the results in Section ] we have also constructed a split-
ting method of order 16. Our aim, rather than proposing a very efficient scheme,
is to show that the barrier of order 14 existing for methods built by applying the
recursive composition technique starting from order two (Family IT) does not apply
in general.

The construction procedure can be summarized as follows. We consider a con-
sistent symmetric composition of the form ([B.1), where now the basic method S(h)
is any symmetric eighth-order scheme. Under such conditions, ten order conditions
must be satisfied to achieve order 16. We accordingly take s = 21, so that we have
ten polynomial equations with ten unknowns. We have performed an extensive nu-
merical search of solutions with relatively small norm, finding 70 complex solutions
with positive real part. Combined with the 162 methods of order eight, this leads
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to 11340 different sixteenth-order splitting methods with s = 315 stages. Among
them, only 324 give rise to splitting methods with coefficients of positive real part.
The coefficients of the method that we have determined as optimal can be found
at http://www.gicas.uji.es/Research/splitting-complex.html.

Remark 3.1. Notice that, whereas for the sixth-order method (3.0 one has

. T
iznll,z.%.}.(JArg(%) B i:nll,l.?JArg(%) ~ 1621 < 375
and then the coefficients ~y; are distributed in a narrower sector than for triple or
quadruple jump methods, for the eighth-order method ([BZ1) one has

. T w7
i:q}%?§15 Arg(v;) — 1_211171.1{1715 Arg(v;) = 2.5997 > 3 + 5 + 7
This method, whereas being the most efficient, is not the appropriate one to be
used as basic scheme to build higher-order methods by composition. The previous
sixteenth-order integrator has been built starting with another eighth-order method
whose coefficients are placed in a narrower sector.

4. NUMERICAL TESTS

For our numerical experiments, we consider two different test problems: a linear
reaction-diffusion equation, and the semi-linear Fisher’s equation, both with peri-
odic boundary conditions in space. It should be mentioned here that this last case
is not covered by the theoretical framework summarized in the Introduction. For
each case, we detail the experimental setting and collect the results achieved by
the different schemes. Our main purpose here is just to illustrate the performance
of the new splitting methods to carry out the time integration as compared with
those constructed by using the Yoshida—Suzuki triple jump composition technique
for both examples. Notice that, in this sense, the particular scheme used to dis-
cretize in space is irrelevant. For that reason, and to keep the treatment as simple
as possible, we have applied a simple second-order finite difference scheme in space.

The numerical approximations w,, obtained by each method ¥(h) are computed
as u, = R(V(h))up—1. In other words, we project on the real axis after completing
each time step.

4.1. A linear parabolic equation. Our first test-problem is the scalar equation

in one-dimension

ou(z,t)
ot

with ug(z) = sin(27z) and periodic boundary conditions in the space domain [0, 1].
We take a = 1, V(x,t) = 3 + sin(27z) and discretize in space

(4.1) = aAu(z,t) + V(x, t)u(z,t), u(z,0) = up(x),

zj = j(ox), j=1,...,N with dz=1/N,
thus arriving at the differential equation

(4.2) % = a AU + BU,
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where U = (u1,...,uy) € RY. The Laplacian A has been approximated by the
matrix A of size N x N given by

and B = diag(V(z1),...,V(zn)). We take N = 100 points and compare different
composition methods by computing the corresponding approximate solution on the
time interval [0, 1]. In particular, we consider the following schemes:

Strang: The second-order symmetric Strang splitting method (4);
(TJ6): The sixth-order triple jump method ([CCDV09], Proposition 2.1)
based on Strang’s second-order method;

(TJ6A): The sixth-order triple jump method ([CCDV09], Proposition 2.2)
based on Strang’s second-order method;

(TJBA): The eighth-order triple jump method ([CCDVQ9], Proposition 2.2)
based on Strang’s second-order method;

(P6ST): The sixth-order method (B.6));

(P8S15): The eighth-order method (B.1).

We compute the error of the numerical solution at time ¢ = 1 (in the 2-norm) as a
function of the number of evaluations of the basic method (the Strang splitting) and
represent the outcome in Figure[2l In the left panel we collect the results achieved
by the Strang splitting and the previous sixth-order composition methods, whereas
the right panel corresponds to eighth-order methods. We have also included, for
reference, the curve obtained by (P6S7).

The relative cost (w.r.t. Strang) of a method composed of s steps is approximated
by 4s, where the factor 4 stands here for an average ratio between the cost of
complex arithmetic compared to real arithmetic. A remarkable outcome of these
experiments is that methods (P6S7) and (P8S15) outperform Strang’s splitting (and
actually all other methods tested here) even for low tolerances. Scheme (P8S15),
in particular, proves to be the most efficient in the whole range explored. The gain
with respect to triple jump methods is also significant and completely support the
approach followed here.

4.2. The semi-linear reaction-diffusion equation of Fisher. Our second test-

problem is the scalar equation in one-dimension,

Ou(z,t)
ot

with periodic boundary conditions in the space domain [0, 1]. We take, in particular,
Fisher’s potential

(4.3) — Aufe,t) + Flu(e, ), u(z,0) = ug(x),

F(u) =u(l —u).
The splitting considered here corresponds to solving, on the one hand, the linear
equation with the operator A being the Laplacian, and on the other hand, the
nonlinear ordinary differential equation
ou(z,t)
ot

= u(x,t)(l - u(x,t))
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Error versus cost in log-log scale Error versus cost in log-log scale
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FIGURE 2. Error versus number of steps for the linear reaction-
diffusion equation (@.T]).
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FiGure 3. Error versus number of steps for the semi-linear
reaction-diffusion equation (3.

with initial condition
u(z,0) = up(x).
Note that it can be solved analytically as
(e"—1)
1+ ug(z)(et — 1)’
which is well defined for small complex time t. We proceed in the same way as

for the previous linear case, starting with ug(z) = sin(27z). After discretization in

space, we arrive at the differential equation
dUu

where U = (u1,...,uy) € RN and F(U) is now defined by
F(U) = (’U,l(l - ’U,l), ‘e ,’U,N(l - ’U,N))

We choose N = 100 and compute the error (in the 2-norm) at the final time ¢ = 1
by applying the same composition methods as in the linear case. The results are
collected in Figure Bl where identical notation has been used. Notice that, strictly

u(z, 1)) = uo(z) + uo(z)(1 - uo(x))
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speaking, the theoretical framework upon which our strategy is based does not
cover this nonlinear problem. Nevertheless, the results achieved are largely similar
to the linear case. In particular, the new eighth-order composition method is the
most efficient even for moderate tolerances.

5. CONCLUDING REMARKS

Splitting methods with real coefficients for the numerical integration of differen-
tial equations of order higher than two have necessarily some negative coeflicients.
This feature does not suppose any special impediment when the differential equa-
tion evolves in a group, but may be unacceptable when it is defined in a semi-group,
as is the case with the evolution partial differential equations considered in this pa-
per. One way to get around this fundamental difficulty is to consider splitting
schemes with complex coefficients having positive real part. This has been recently
proposed for diffusion equations in [CCDV09, [HO09b|. Splitting and composition
methods with complex coefficients have been considered in different contexts in the
literature (see [BCM10] and references therein).

In [CCDV09, [HOO09b], splitting methods up to order 14 with complex coefficients
with non-negative real part have been recursively constructed either by the so-
called triple-jump compositions or by the quadruple-jump compositions, starting
from the symmetric second-order Strang splitting. In this work we prove that
there exists indeed an order barrier of 14 for methods constructed in this way.
More generally, we show that no method of order higher than 14 with coefficients
having non-negative real part can be constructed by sequential s-jump compositions
starting from a symmetric method of order 2. We further show, by explicitly
obtaining methods of order 16 (as the composition of a basic symmetric method of
order 8), that this order barrier does not apply for general composition methods
(non-necessarily constructed by recursive applications of s-jump compositions) with
complex coefficients with non-negative real part.

In addition to this order barrier, another drawback of methods resulting from
applying the s-jump composition procedure is that for high orders they require a
larger number of stages (i.e., number of compositions of the basic symmetric second
order method) than methods obtained by directly solving the order conditions with
the minimal number of stages. For instance, methods of order 6 (respectively, 8)
obtained with triple jump compositions need 9 (resp. 27) compositions of the basic
second-order method, whereas, as we show in the present work, methods of order 6
(resp. 8) can be constructed (by directly solving for the required order conditions)
with 7 (resp. 15) stages. An analysis of the local error coefficients supported
by numerical tests shows that the methods proposed here are more efficient than
those obtained in [CCDV09, [HOO09b] by applying the recursive triple jump and
quadruple jump constructions. An additional requirement when choosing a given
method is that the arguments of the complex coefficients of the scheme also have
to be taken into account. This constitutes a critical point for evolution equations
where one of the operators (say, A) has non-real eigenvalues in the right-hand side
of the complex plane, as occurs, in particular, with the complex Ginzburg—Landau
equation (LG). In such a case, splitting methods of the form ([Z) where one of the
two sets of coefficients a; or b; is entirely contained in the positive real axis, whereas
the other set included in the right-hand side of the complex planes are particularly
well suited. Such splitting methods cannot be constructed as composition methods
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with the Strang splitting as the basic method, so that a separate study is required
to get the most efficient schemes within this class.

Based on the theoretical framework worked out in [HO09a], the integrators pro-
posed here can be applied to the numerical integration of linear evolution equations
involving unbounded operators in an infinite dimensional space, like linear diffusion
equations. As a matter of fact, although the theory developed in [HO09a] does not
cover the generalization to semi-linear evolution equations, we have also included
in our numerical tests a system of ODEs obtained from semi-linear evolution equa-
tions with a certain space discretization. All the numerical tests carried out with
periodic boundary conditions show a considerable improvement in efficiency of our
new methods with respect to existing splitting schemes. A remarkable feature of the
new eighth-order composition method when applied to both the linear and semi-
linear diffusion examples is that it is more efficient than all the other integrators
of order p < 8 in the whole range of tolerances explored when periodic boundary
conditions are considered.

Concerning other (e.g., Dirichlet and Neumann) boundary conditions, the ex-
periments carried out in [HOQ9D] for linear problems with methods obtained by
applying the triple and quadruple jump technique show the existence of an order
reduction phenomenon. Its origin is attributed by the authors of [HO09b| to the
fact that Condition 2 in the introduction is not generally satisfied in this setting.
In other words, terms of the form E, e!(A*5) in (L) are not uniformly bounded
on the interval [0, 7] for some T > 0. As a consequence, the classical convergence
order is no longer guaranteed in that case. This order reduction is also present, of
course, when the methods introduced in this paper are applied not only to linear
but also semi-linear problems. Nevertheless, as pointed out in [HO09D], splitting
schemes of high-order involving complex coefficients may still be advantageous in
comparison with, say, Strang splitting when applied to linear parabolic problems
with Dirichlet or Neumann boundary conditions, as they often lead to smaller errors
and the order reduction is somehow confined to a neighborhood of the boundary.
The situation, in our opinion, calls for a detailed study of the effect of boundary
conditions other than the periodic case in the global efficiency of splitting methods
with complex coefficients and the analysis of their applicability for more general
parabolic problems than those considered in this paper.
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