
Fortran codes illustrating the methods presented in

the paper “New families of symplectic splitting

methods for numerical integration in dynamical

astronomy”, by S. Blanes, F. Casas, A. Farrés, J.

Laskar, J. Makazaga and A. Murua.

1 Introduction

The following notes have to be read jointly with Ref. [1]. The paper [2] can
also be useful. The codes included here illustrate the methods by solving the
two-dimensional perturbed Kepler problem, with two different perturbations.

1.1 Splitting methods with exact flows

We consider a generic differential equation of the form

x′ = f [a](x) + εf [b](x), x(0) = x0 ∈ RD, (1)

where |ε| � 1 and each part

x′ = f [a](x), x′ = εf [b](x) (2)

is exactly solvable (or can be numerically solved up to round off accuracy) with
solutions

x(τ) = ϕ[a]
τ (x0), x(τ) = ϕ[b]

τ (x0)

respectively, at t = τ , the time step. We consider compositions like

ψτ = ϕ[a]
as+1τ ◦ ϕ

[b]
bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ
[b]
b1τ
◦ ϕ[a]

a1τ (3)

for appropriately chosen coefficients ai, bi. We say that such a method is of
(generalized) order (r1, r2, . . . , rm) (where r1 ≥ r2 ≥ · · · ≥ rm) if the local error
satisfies that

ψτ (x)− ϕτ (x) = O(ετ r1+1 + ε2τ r2+1 + · · ·+ εmτ rm+1),

where ϕτ (x0) denotes the exact solution of (1).
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1.2 Splitting methods with approximate flows

If x′ = εf [b](x) is not exactly solvable but can approximated it by a symmetric
second order method, we can consider a composition of the form

ψ̃h = ϕ[a]
as+1τ ◦ ϕ̃

[b]
bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ
[a]
a2τ ◦ ϕ̃

[b]
b1τ
◦ ϕ[a]

a1τ , (4)

where ϕ̃
[b]
τ is a symmetric second order approximation to ϕ

[b]
τ .

2 Two simple examples

2.1 The perturbation is exactly solvable

We consider the two-dimensional perturbed Kepler problem with Hamiltonian

H(q, p) = HKep(q, p) + εHb(q)

where

HKep =
1

2
(p21 + p22)−

1

r
, Hb = − 1

2r3

(
1− 3q21

r2

)
, (5)

and r =
√
q21 + q22. This Hamiltonian is a first approximation used to describe

the dynamics of a satellite moving into the gravitational field produced by a
slightly oblate spherical planet and whose motion takes place in a plane con-
taining the symmetry axis of the planet. The following schemes are used:

• ABA82: The 4-stage (8,2) method [4, 5].

• ABA84: The 5-stage (8,4) method [5].

• ABA104: The 7-stage (10,4) method [1, 2].

• ABA864: The 7-stage (8,6,4) method [1, 2].

• ABA1064: The 8-stage (10,6,4) method [1, 2].

We have some fortran programs to solve this problem and can be easily
adapted to solve any other problem of this class. The main program is:

PerturbedKepJacobiEnergy.f

and the coefficients of the methods are collected in

coefficientsJacobi(a,b,c,imet,iord)

where of iord is the the number to label each method and imet is the number
of stages of each method (the cost per step). In the main file we can choose the
method to be used. The following choices are possible:

iord=1: ABA (8,2) - imet=4 stages

iord=2: ABA-McL (8,4) - imet=5 stages

iord=3: ABA (10,4) - imet=7 stages

iord=4: ABA (8,6,4) - imet=7 stages

iord=5: ABA (10,6,4) - imet=8 stages
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One step is computed as follows

do 40 j=1,imet+1

bh=b(j)*h; ch=c(j)*h**3; ah=a(j)*h

call keplerh(x,vx,ah)

call perturbation(bh,ch,eps,x,vx)

40 continue

where h is the time step and b(j), a(j) are the coefficients of the method.
The code allows to use a corrector (or modified potential with coefficients c(j)).
Here keplerh(x,vx,ah) calls to a subroutine to advance the coordinates x and
the momenta vx from some initial conditions to their final value after a time
step ah through a pure Kepler problem (in two dimensions). It integrates the
Kepler problem in Cartesian coordinates using the f and g Gauss functions [3].
In a similar way, perturbation(bh,ch,eps,x,vx) advances the system for the
perturbation (it advances only the momenta).

The FSAL property is not applied for simplicity of the presentation (it only
requires to rewrite a few lines and to indicate when the output is desired.

For the numerical experiments the code is written with initial conditions
q1 = 1 − e, q2 = 0, p1 = 0, p1 =

√
(1 + e)/(1− e), with e = 1/4, which

would correspond to the eccentricity of the unperturbed Kepler problem, and
ε = 10−3. It is integrated along the interval t ∈ [0, 10000] and compute the
averaged error in energy. This numerical test is repeated several times for each
method using different time steps (changing the computational cost for the
numerical integration). Finally, it shows the average errors versus the time step
scaled by the number of stages per step, i.e. τ/s, in logarithmic scale (the cost
is inversely proportional to τ/s, and the best methods should provide a given
accuracy with the largest value of τ/s).

2.2 The perturbation is NOT exactly solvable

We now consider the two-dimensional perturbed Kepler problem with Hamil-
tonian

H(q, p) = HKep(q, p) + ε(Ha(p) +Hb(q))

where

Ha =
1

2
(p21 + p22) (6)

and HKep, Hb are the same as in the previous example. The following schemes
are used:

• ABA82: The 4-stage (8,2) method.

• ABAH844: The 6-stage (8,4) method [1, 2].

• ABAH864: The 8-stage (8,6,4) method [1, 2].

• ABAH1064: The 9-stage (10,6,4) method [1, 2].
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We have some fortran programs for which contain the coefficients for all
methods to solve this problem and can be easily adapted to solve any other
problem of this class. The main program is:

PerturbedKepHeliocentricEnergy.f

and the coefficients for the method are collected in

coefficientsHeliocentric(a,b,imet,iord)

where now

iord=1: ABA (8,2) - imet=4 stages

iord=2: ABA (8,4,4) - imet=6 stages

iord=3: ABA (8,6,4) - imet=8 stages

iord=4: ABA (10,6,4) - imet=9 stages

One step is just a simple modification of the previous case

do 40 j=1,imet+1

bh=b(j)*h; ah=a(j)*h

call keplerh(x,vx,ah)

x=x+eps*(bh/2.d0)*vx

call perturbation(bh,ch,eps,x,vx)

x=x+eps*(bh/2.d0)*vx

40 continue

Observe that the diference with the previous case is that the exact solution for
the perturbation is replaced by the leapfrog method for the fractional time step
bh

x=x+eps*(bh/2.d0)*vx

call perturbation(bh,ch,eps,x,vx)

x=x+eps*(bh/2.d0)*vx
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