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1 Numerical example

We illustrate the use of the method jointly with Taylor and Chebyshev methods
on a simple example that allows to recover the results from the paper as well
as to use these methods in other more challenging problems.

Example 1. The problem consists in computing u(t) = exp(−itH)u0 with

H =
1

2


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

 ∈ RN×N . (1)

The algorithms compute u = e−iαte−iβtH̃u0 where

H = αI + βH̃, where α =
Emax + Emin

2
, β =

Emax − Emin

2
(2)

The eigenvalues of H verify 0 ≤ Ek ≤ 2 for all k, so that we can take Emin = 0,
Emax = 2, and thus α = β = 1 in (2). For the numerical examples we take
N = 10000 and u0 a unitary random vector. The matrix H is defined in the
subroutine ’ProdAv.f’ which computes the products Hu. The initial conditions
are stored in a separate file, ’InitialConditions.dat, so all methods always
use the same initial conditions’.

There are three methods implemented: Taylor and Chebyshev methods, and
the new splitting pseudo-method. All three methods require the same inputs
and are implemented in real variables. These methods compute the product

∗This document has to be read jointly with Ref. [1]. We show how to obtain the results
shown in Figures 3 and 4 from Example 1 in the paper.
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for the scaled and shifted exponential, and the main program makes the last
shift. This main program also measures the energy at the initial instant as
well as after each step and the norm so, one can measure the relative error in
energy and norm (unitarity). All methods return imet, which is the number of
vector-matrix products required, which we take as the cost of the methods.

Some commands shared by all three methods like

beta=(Emax-Emin)/2.d0; rhoH=beta;

alpha=(Emax+Emin)/2.d0; shift=alpha

theta=t*beta

qs = cos(shift*t)*q + sin(shift*t)*p

ps = -sin(shift*t)*q + cos(shift*t)*p

q=qs; p=ps

appear in the main program. We very briefly review the methods.

1.1 Taylor method: TaylorEx.f

First, the algorithm checks that τβ ≤ 15. If not, the effective time is divided
such this conditions is satisfied (and as close as possible to this value), and the
degree of the polynomial is chosen according the formula for the error bound.

Here, wτ is computed by Horner’s algorithm:

y0 = u0
do k = 1,m

yk = u0 − i
τβ

m+ 1− k
H̃yk−1

enddo
wτ = ym

(3)

This algorithm is computed using real variables (the real and imaginary parts
are computed separately).

1.2 Chebyshev method: ChebyshevEx.f

The algorithm starts by computing the degree of the polynomial necessary
to ensure an error bound below tol. Next, it computes the Bessel func-
tions, Ji ≡ Ji(τ β), necessary for the algorithm. We found that the function
’dbesJn(ic,theta)’ defined in fortran produced large round off errors when
i ∼ τ β > 100, which are usual values for the Chebyhsev method, and we de-
cided to write our own stable routine. Then the Clenshaw recursive algorithm:

dm+2 = 0, dm+1 = 0
do i = m, 0

di = ciu0 + 2H̃di+1 − di+2

enddo

u1 ≡ PCm−1(τβH̃)u0 = d0 − d2
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Figure 1: Degree m of the polynomials to achieve tolerances tol= 10−k, k =
1, 2, . . . , 12 for different values of Tβ (β = 1 for this problem) as determined
by the error bound formulas using the Chebyshev method (squares) and the
algorithm based on splitting methods (circles).

is written in real variables as follows: vk = Re(dk) and wk = Im(dk)

vm+1 = 0, wm+1 = 0, vm = 0, wm = 0
do i = m− 1, 0

if
(
bi/2c = b(i+ 1)/2c

)
(% if i is even %)

call ProdAv(wi+1, z)

vi = (−1)i/2Jiq0 + 2z − vi+2

call ProdAv(vi+1, z)

wi = (−1)i/2Jip0 + 2z − wi+2

else
call ProdAv(wi+1, z)

vi = (−1)(i−1)/2Jip0 + 2z − vi+2

call ProdAv(vi+1, z)

wi = −(−1)(i−1)/2Jiq0 + 2z − wi+2

endif
enddo
u1 = (q1, p1) ≡ PCm−1(τH)u0 = (v0 − v2, w0 − w2)

This algorithm needs seven real vectors in memory (z, vi, vi+1, vi+2, wi, wi+1, wi+2)
(4 complex vectors using the algorithm in complex variables).

The program MainExFigs34.f computes the cost for different values of the
tolerance as well as the error in energy and unitarity for all three methods.
We compute the cost of the methods for different values of the tolerance. In
particular, we take tol= 10−k, k = 1, 2, . . . , 15 and final integration times
T = 20, 50, 100, 200, 500, 1000. Figure 1 (Figs. 3 in the paper) shows the
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Figure 2: Same as Figure 1 but showing the relative error in energy.

results obtained with Chebyshev (line with squares) and the algorithm based on
splitting schemes (line with circles) as a function ofm. Even when high accuracy
is required over long integration times (the most advantageous situation for
Chebyshev approximations), the new algorithm requires a smaller value of m
and therefore less computational effort. Notice how the algorithm selects the
value of m to achieve the desired tolerance.

Figure 2 (Figs. 4 in the paper) shows the corresponding results for the
relative error in energy versus m for the same example. Similar results are
obtained for the error in unitarity or the two-norm error for which the error
bounds apply (in this case one should compute numerically the exact solution
and compare with the approximations obtained for each value of tol).

The results can be obtained by running the fortran file

MainExFigs.f

This program generate all data files for all tolerances and final times for all
methods (Chebyshev, Taylor and Splitting). The Matlab files

FigEx1a.m, FigEx1aa.m

read all data and plot the figures (the results from Taylor are computed, but
not plotted because they show a worse performance).
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