
Fortran codes to compute u(t) = e−itHu0 using an

algorithm based on symplectic splitting methods∗

Sergio Blanes1† Fernando Casas2‡ Ander Murua3§

February 17, 2015

1 Introduction

The algorithm is mainly addressed to numerically solve the discretized Schrödin-
ger equation, which is a linear system of ordinary differential equations (ODEs)

i
d

dt
u(t) = Hu(t), u(0) = u0 ∈ CN , (1)

where u(t) represents a discretized version of the wave function at the space
grid points and H is the N × N Hermitian Hamiltonian matrix. The spatial
discretization restricts the energy range of the approximation and imposes an
upper bound to the high frequency components represented by the discrete
solution. The exact solution is of course

u(t) = e−itH u0, (2)

and u(t) is approximated by methods which use polynomials (and thus only
vector-matrix products). In this sense, the proposed methods are useful to
numerically solve (2) even if this problem is not originated from the Schrödinger
equation.

The following inputs have to be provided by the user:

• t: Time of integration.

• u0: Initial conditions.

• Emax, Emin: Upper and lower bounds to the extreme eigenvalues of H.

• N : the dimension of the problem.

• ProdAv(v,N,w): A subroutine, ProdAv.f, to be called by the algorithm
to obtain w from v such that w = Hv with v, w ∈ RN .

∗This document is to be read jointly with Ref. [1]. The papers [2, 3] can also be useful
to better understand how the new symplectic splitting methods are built. These notes are
addressed to show how to use the algorithm.
†Email: serblaza@imm.upv.es
‡Email: Fernando.Casas@uji.es
§Email: Ander.Murua@ehu.es

1

• tol: The desired tolerance, in the sense that the approximate solution, ũ,
must satisfy ‖ũ− u(t)‖ < tol.

We write

H = αI + βH̃, where α =
Emax + Emin

2
, β =

Emax − Emin

2
(3)

and −1 ≤ σ(H̃) ≤ 1. If we consider the integration for a time step of length
τ ≡ ∆t we have

u(τ) = e−iτH u0 = e−iτα e−iτβH̃ u0. (4)

Then we compute the vector-matrix products as follows:

H̃ u0 =
1

β
H u0 −

α

β
u0

The methods compute approximations to the scaled and shifted problem

w(τ) = e−iτβH̃u0. (5)

and finally the shift is applied.

1.1 Symplectic splitting pseudo-method: SplittingEx.f

We have the program MainSplittingMethod.f as an example for illustrating
the use of the method. Next we reproduce the part of the code where the
relevant data are introduced. These correspond to Example 1 in [1]:

N = 10000, Emin = 0, Emax = 2, t = 20, tol = 10−8.

The initial conditions are stored in the file InitialConditions.dat.

MainSplittingMethod.f

c N is the dimension of the problem

PARAMETER(N=10000)

cccc Data to be provided by the user ccccccccccccccccccccccccc

c Integration Time

t=20.d0

c Bounds to the spectral radius

Emin=0.d0; Emax=2.d0

c Tolerance

tol=10.d0**(-8.d0)

c Initial conditions

OPEN (30,FILE=’InitialConditions.dat’,STATUS=’unknown’)

do jj=1,N

read (30,*) q0(jj),p0(jj)

enddo

c Computing the solution using Splitting Methods

2

call SplittingEx(t,Emin,Emax,tol,N,q0,p0,q,p,icost)

C Subroutines used

include ’SplittingEx.f’

include ’ProdAv.f’

The input data are: ’t,Emin,Emax,tol,N’, and the initial conditions ’q0,p0’.

The subroutine SplittingEx returns the solution, ’q,p’, and the cost ’icost’
as the number of vector-matrix multiplications. This program uses the subrou-
tine ’ProdAv.f’ provided by the user with the following arguments:

call ProdAv(v,N,w)

that computes the vector-matrix product, w=Hv.

The relevant part of SplittingEx.f is:

c Number of coefficients for each method

nmet(1)=10; nmet(2)=10; ... nmet(19)=60; nmet(20)=60;

beta=(Emax-Emin)/2.d0; rhoH=beta;

alpha=(Emax+Emin)/2.d0; shift=alpha

theta=t*beta

call ChoiceMethod(theta,tol,n1,imethod1,h1,n2,imethod2,h2)

call CoefsSplittingEx(imethod1,a1,b1,imethod2,a2,b2)

q = q0; p = p0

ha1=h1*a1; hb1=h1*b1

do i=1,n1

call Split(q,p,N,imethod1,nmet(imethod1),ha1,hb1,beta,shift)

enddo

ha2=h2*a2; hb2=h2*b2

do i=1,n2

call Split(q,p,N,imethod2,nmet(imethod2),ha2,hb2,beta,shift)

enddo

qs = cos(shift*t)*q + sin(shift*t)*p

ps = -sin(shift*t)*q + cos(shift*t)*p

q=qs; p=ps

We have a list of 20 methods where nmet(i) for i=1,...,20, stores the number
of stages of each method. Next, α, β and θ are computed. From this informa-
tion, the subroutine ChoiceMethod chooses the optimal methods labeled by
imethod1,imethod2, to be used n1,n2, times with time steps h1,h2, respec-
tively. Once the methods are chosen, the subroutine CoefsSplittingEx, load
the coefficients of the corresponding methods into the vectors a1,b1,a2,b2.

3

Next, each step for each method is computed . The implementation applies
the FSAL (first-same-as-last) property to save one vector-matrix product as
follows:

q = q0; p = p0

ha1=h1*a1; hb1=h1*b1

call ProdAv(p,N,p1)

do i=1,n1

q=q + ha1(1)*(p1/beta - shift/beta*p)

do j=1,nmet(imethod1)

call ProdAv(q,N,q1)

p=p - hb1(j)*(q1/beta - shift/beta*q)

call ProdAv(p,N,p1)

q=q + ha1(j+1)*(p1/beta - shift/beta*p)

enddo

enddo

ha2=h2*a2; hb2=h2*b2

do i=1,n2

q=q + ha2(1)*(p1/beta - shift/beta*p)

do j=1,nmet(imethod2)

call ProdAv(q,N,q1)

p=p - hb2(j)*(q1/beta - shift/beta*q)

call ProdAv(p,N,p1)

q=q + ha2(j+1)*(p1/beta - shift/beta*p)

enddo

enddo

which requires 2(n1*nmet(imethod1)+n2*nmet(imethod2))+1 real vector-ma-
trix products (or n1*nmet(imethod1)+n2*nmet(imethod2)+1/2 products). Fi-
nally, the shift is applied to the auxiliary vectors qs,ps, which lead to the
approximate solution q,p.

The set of methods are collected in the directory Coefficients, which must
be located in the same directory as the main program (or one has to indicate
were it is allocated). The coefficients of each method are collected in separate
files with suggested names:

• coefs10Theta05.dat: The 10-stage method with θ′ = 0.5, M
(0.5)
10 .

• coefs10Theta09.dat: The 10-stage method with θ′ = 0.9, M
(0.9)
10 .

• Etc.

NOTE: If new methods with different number of stages and tailored for dif-
ferent tolerances were obtained in the future, this algorithm will be adjusted
properly for an optimal performance.

4

References

[1] S. Blanes, F. Casas, and A. Murua. An efficient algorithm based on split-
ting for the time integration of the Schrödinger equation. 2015. Submitted.
Axiv.....

[2] S. Blanes, F. Casas, and A. Murua. On the linear stability of splitting
methods. Found. Comp. Math., 8:357–393, 2008.

[3] S. Blanes, F. Casas, and A. Murua. Error analysis of splitting methods for
the time dependent Schrödinger equation. SIAM J. Sci. Comput., 33:1525–
1548, 2011.

5

