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1. Highly oscillatory wave problem

Highly oscillatory optical wave equations, such as the multidimensional paraxial Helmholtz equation, have

been used extensively in modeling propagation of the light from lens to the focal region in applications.

Numerical approximations of solutions of such equations contain crucial light information in focal regions

even when the f -number is small. However, it has been difficult to compute highly oscillatory numer-

ical solutions efficiently. This paper proposes two correlated splitting strategies for fast computations

of oscillatory wave solutions. Reinforced by an exponential transformation, the splitting schemes offer

straightforward and novel oscillation-free ways for solving underlying differential equations with accuracy

and stability.

For a slowly varying envelope approximation of the light beam propagation, consider the paraxial

Helmholtz equation,

2iκ
∂E
∂ z

=
∂ 2E
∂x2 +

∂ 2E
∂y2 , 0 ≤ x,y ≤ ℓ, z ≥ z0, (1)

where i =
√−1, κ = 2π/λ is the wave number, λ is the wavelength, z is the beam propagation

direction, z0 is the initial beam location, x,y are dimensional directions perpendicular to the light, ℓ is

a realistic boundary location indicator and E is the complex envelope of the wave function investigated.

Values of κ ≈ 106.
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Since values of κ can be extremely large in optical applications, the complex function u is highly oscil-

latory. Consequently, the effectively of the numerical solution via conventional finite difference schemes

has been extremely difficult to achieve since mesh step sizes cannot be unrealistically small.

Certain spectrum or boundary element methods may possess certain merits, the main challenge

pertains in balancing the algorithmic simplicity and accuracy.

Our new approach is based on

– Eikonal Equation - Fermat Principle - Hamilton-Jacobi Equations –
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Consider the wave disturbance function in geometrical optics,

E(x,y,z) = u(x,y,z)eiω(x,y,z).

Set ω(x,y,z) = κv(x,y,z) and this leads to

E(x,y,z) = u(x,y,z)eiκv(x,y,z). (2)

Assume that u ∕= 0 and substitute (2) into (1) to yield ray equations

∂u
∂ z

= a

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
+ f1, (3)

∂v
∂ z

= b

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
+ f2, (4)

where

a =
u
2
, b =− 1

2κ2u
, f1 =

∂u
∂x

∂v
∂x

+
∂u
∂y

∂v
∂y

, f2 =
1
2

(
∂v
∂x

)2

+
1
2

(
∂v
∂y

)2

.

Note that solutions of (3), (4) are oscillation-free for large κ .
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Denote

w =

⎛
⎝ u

v

⎞
⎠ , f =

⎛
⎝ f1

f2

⎞
⎠ , M =

⎛
⎝ 0 a

b 0

⎞
⎠ ,

then (3), (4) can be written as

wz = Mwxx +Mwyy + f . (5)

Lemma 1 For fixed (x,y,z), M is similar to a skew symmetric matrix and thus its eigenvalues are pure

imaginary. Further, the spectral radius ρ(M) = 1/(2κ) and the condition number cond2(M) = 1.

Initial condition:

w(x,y,z0) = g0(x,y). (6)

w(0,y,z) = w(ℓ,y,z) = 0, w(x,0,z) = w(x, ℓ,z) = 0. (7)

or

wx(0,y,z) = wx(ℓ,y,z) = 0, wy(x,0,z) = wy(x, ℓ,z) = 0, (8)
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2. Exponential transformation based splitting methods (ETBSM)

Exponential transformation (2) based ADI semi-discretization

wr+1/2 −wr =
hz

2

(
Mwr+1/2

xx +Mwr
yy

)
+

hz

2
f r, (9)

wr+1 −wr+1/2 =
hz

2

(
Mwr+1/2

xx +Mwr+1
yy

)
+

hz

2
f r+1/2. (10)

Similarly, we may consider the exponential transformation (2) based LOD semi-discretization

wr+1/2 −wr =
hz

2

(
Mwr+1/2

xx +Mwr
xx

)
+

hz

2
f r, (11)

wr+1 −wr+1/2 =
hz

2

(
Mwr+1/2

yy +Mwr+1
yy

)
+

hz

2
f r+1/2. (12)
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Let

h2
xδ 2

x ωσ
s,t = ωσ

s+1,t −2ωσ
s,t +ωσ

s−1,t , h2
yδ 2

y ωσ
s,t = ωσ

s,t+1 −2ωσ
s,t +ωσ

s,t−1.

We acquire

I. EXPONENTIAL TRANSFORMATION BASED ADI (ETBADI) SCHEME:

wr+1/2
s,t −wr

s,t =
hz

2
Mr

s,t

(
δ 2

x wr+1/2
s,t +δ 2

y wr
s,t

)
+

hz

2
f r
s,t ,

wr+1
s,t −wr+1/2

s,t =
hz

2
Mr+1/2

s,t

(
δ 2

x wr+1/2
s,t +δ 2

y wr+1
s,t

)
+

hz

2
f r+1/2
s,t ,

s = 1,2, . . . ,m; t = 1,2, . . . ,n; r = 0,1, . . .

II. EXPONENTIAL TRANSFORMATION BASED LOD (ETBLOD) SCHEME:

wr+1/2
s,t −wr

s,t =
hz

2
Mr

s,t

(
δ 2

x wr+1/2
s,t +δ 2

x wr
s,t

)
+

hz

2
f r
s,t ,

wr+1
s,t −wr+1/2

s,t =
hz

2
Mr+1/2

s,t

(
δ 2

y wr+1/2
s,t +δ 2

y wr+1
s,t

)
+

hz

2
f r+1/2
s,t ,

s = 1,2, . . . ,m; t = 1,2, . . . ,n; r = 0,1, . . .
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As an illustration, let us consider the homogeneous Dirichlet boundary condition (7). Hence, we can

reformulate our schemes into matrix form:

III. ETBADI SCHEME:

(I−μMr)wr+1/2 = (I+ηNr)wr +
hz

2
f r, (13)(

I−ηNr+1/2
)

wr+1 =
(

I+μMr+1/2
)

wr+1/2 +
hz

2
f r+1/2, (14)

r = 0,1, . . .

IV. ETBLOD SCHEME:

(I−μMr)wr+1/2 = (I+μMr)wr +
hz

2
f r, (15)(

I−ηNr+1/2
)

wr+1 =
(

I+ηNr+1/2
)

wr+1/2 +
hz

2
f r+1/2, (16)

r = 0,1, . . . ,

and μ , η are dimensional Courant numbers.
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Here I ∈ 2n2×2n2 is an identity matrix and

Mσ = diag (Mσ
1 ,M

σ
2 , . . . ,M

σ
n ) ,

Mσ
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2Mσ
1, j Mσ

1, j

Mσ
2, j −2Mσ

2, j Mσ
2, j

Mσ
3, j −2Mσ

3, j Mσ
3, j

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Mσ

n−1, j −2Mσ
n−1, j Mσ

n−1, j

Mσ
n, j −2Mσ

n, j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

j = 1,2, . . . ,n,
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and

Nσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2Nσ
1 Nσ

1

Nσ
2 −2Nσ

2 Nσ
2

Nσ
3 −2Nσ

3 Nσ
3

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Nσ

n−1 −2Nσ
n−1 Nσ

n−1

Nσ
n −2Nσ

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Nσ
j = diag

(
Mσ

1, j,M
σ
2, j, . . . ,M

σ
n, j

)
j = 1,2, . . . ,n.
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For the simplicity in discussions, we only consider the ETBADI scheme in following discussions. The

discussion of ETBLOD scheme is similar.

Lemma 2 Matrices Mσ and Nσ are similar.

Lemma 3 Eigenvalues of matrices Mσ and Nσ are pure imaginary.

Further, Let e j denote the jth column of the identity matrix. Then

P = [e1,e3, . . . ,e2n2−1,e2,e4, . . . ,e2n2]

is a 2n2×2n2 permutation matrix. Furthermore, we have

PT Sσ P =

⎡
⎣ 0 Λα

Λβ 0

⎤
⎦ ,

where

Λα = diag(ασ
1,1,α

σ
2,1, . . . ,α

σ
n,1,α

σ
1,2, . . . ,α

σ
n,n), Λβ = diag(β σ

1,1,β
σ
2,1, . . . ,β

σ
n,1,β

σ
1,2, . . . ,β

σ
n,n).
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Moreover, we observe that

PT T2P =

⎡
⎣ L⊗ In 0

0 L⊗ In

⎤
⎦ , PT T1P =

⎡
⎣ In ⊗L 0

0 In ⊗L

⎤
⎦ ,

where L = tridiag(1,−2,1) ∈ ℝ
n×n.

Remark:

A⊗Bn×m =

⎡
⎢⎢⎢⎢⎢⎣

Ab11 Ab12 ⋅ ⋅ ⋅ Ab1m

Ab21 Ab22 ⋅ ⋅ ⋅ Ab2m

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Abn1 Abn2 ⋅ ⋅ ⋅ Abnm

⎤
⎥⎥⎥⎥⎥⎦ .

Therefore, we have

PT Mσ P = PT Sσ T1P =

⎡
⎣ 0 Λα(In ⊗L)

Λβ (In⊗L) 0

⎤
⎦≡ M̂,

PT Nσ P = PT Sσ T2P =

⎡
⎣ 0 Λα(L⊗ In)

Λβ (L⊗ In) 0

⎤
⎦≡ N̂.
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Part of the following discussions is contributed by W. Sun, University of Macau:

Lemma 4 We have

∥Λα∥2 =
maxφ

2
= O(1), ∥L∥2 < 4 = O(1), ∥Λβ∥2 =

1
2κ2 minφ

= O

(
1

κ2

)
.

Lemma 5 The spectral radius of matrices Mσ and Nσ satisfy the following relations

ρ (Mσ ) , ρ (Nσ ) = O

(
1
κ

)
.

Lemma 6 We have

∥M̂2∥2, ∥N̂2∥2 = O

(
1

κ2

)
.

The result is obviously much stronger than that in Lemma 5.
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Let

Aσ = (I2n2 −μMσ )−1 (I2n2 +ηNσ )≡ I2n2 +B, (17)

where μ , η are reasonably small, and

Bσ = (I2n2 −μMσ)−1 (ηNσ +μMσ ). (18)

Then we can prove

Theorem 7 Further, the ETBADI scheme is oscillation-free and unconditionally asymptotically stable,

that is,

∥A2∥2, ∥B2∥2 = O

(
μ2+η2

κ2

)
,

unconditionally.
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3. Optimized computational procedures

For ETBADI Scheme:

Arv
r+1/2 = μDbrSφ r

1 +φ r
2 , (19)

ur+1/2 = μDarSvr+1/2 +φ r
1, (20)

Br+1/2vr+1 = ηDbr+1/2Tφ r+1/2
3 +φ r+1/2

4 , (21)

ur+1 = ηDar+1/2Tvr+1 +φ r+1/2
3 , (22)

r = 0,1,2, . . . ,

where

Ar = I−μ2DbrSDarS,

Br+1/2 = I−η2Dbr+1/2TDar+1/2T

and u0, v0 are initial values given by (6).
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For ETBLOD Scheme:

Arv
r+1/2 = μDbrSψr

1 +ψr
2, (23)

ur+1/2 = μDarSvr+1/2+ψr
1, (24)

Br+1/2vr+1 = ηDbr+1/2Tψr+1/2
3 +ψr+1/2

4 , (25)

ur+1 = ηDar+1/2Tvr+1+ψr+1/2
3 , (26)

r = 0,1,2, . . . ,

where

ψσ
1 = uσ +ηDaσ Svσ +

hz

2
f σ
1 , ψσ

2 = vσ +ηDbσ Suσ +
hz

2
f σ
2 ,

ψσ
3 = uσ +μDaσ Tvσ +

hz

2
f σ
1 , ψσ

4 = vσ +μDbσ Tuσ +
hz

2
f σ
2 .

.Castellón 2010 ⌣ 22 P. Page 16



Exponentially transformed splitting methods... Q. Sheng et al.

4. Simulation experiments
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Figure 1: Simulated numerical solutions u(x,y,z150) and v(x,y,z150).
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Figure 2: Side projections of simulated numerical solutions u(x,y,z150) and v(x,y,z150).
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We may convert u and v to E which is complex.
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Figure 3: Simulated real and imaginary parts of the solution E(x,y,z150).
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Further,
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Figure 4: Modules and its contour map of the solution E(x,y,z90).
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Thank you and have a wonderful Symposium
on Splitting Methods!
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