Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Fourier-Hermite methods for perturbed harmonic oscillator problems

Philipp Bader joint work with Sergio Blanes

Instituto de matemática multidisciplinar Universidad Politécnica de Valencia

Symposium on Splitting Methods for Differential Equations Castellón, September 7, 2010

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References

Structure

Introduction

- Motivation
- Problem setting
- Overview of existing methods

Algebraic relations

- 3 Harmonic oscillator splitting
- 4 Comparison of performance

Outlook

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
• 0 0000					
Motivation					

Different types of equations

Hamiltonian mechanics

$$H = \frac{1}{2}p^2 + V(q) \Longrightarrow \frac{d}{dt} \begin{pmatrix} q \\ p \end{pmatrix} = \begin{cases} \nabla_p H \\ -\nabla_q H \end{cases}$$

Quantum mechanics - Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi(x,t) = H\Psi(x,t) \equiv \left(-\frac{1}{2}\Delta + V(x)\right)\Psi(x,t)$$

Mean field nonlinear QM - Gross-Pitaevski equation

$$i\frac{\partial}{\partial t}\Phi(x,t) = \left(-\frac{1}{2}\Delta + V(x) + g|\Phi(x,t)|^2\right)\Phi(x,t)$$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
• 0 0000					

Different types of equations

Hamiltonian mechanics

$$H = \frac{1}{2}\rho^2 + V(q) \Longrightarrow \frac{d}{dt} \begin{pmatrix} q \\ p \end{pmatrix} = \begin{cases} \nabla_p H \\ -\nabla_q H \end{cases}$$

Quantum mechanics - Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi(x,t) = H\Psi(x,t) \equiv \left(-\frac{1}{2}\Delta + V(x)\right)\Psi(x,t)$$

Mean field nonlinear QM - Gross-Pitaevski equation

$$i\frac{\partial}{\partial t}\Phi(x,t) = \left(-\frac{1}{2}\Delta + V(x) + g|\Phi(x,t)|^2\right)\Phi(x,t)$$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
● 0 0000					
Motivation					

Different types of equations

Hamiltonian mechanics

$$H = \frac{1}{2}\rho^2 + V(q) \Longrightarrow \frac{d}{dt} \begin{pmatrix} q \\ p \end{pmatrix} = \begin{cases} \nabla_p H \\ -\nabla_q H \end{cases}$$

Quantum mechanics - Schrödinger equation

$$irac{\partial}{\partial t}\Psi(x,t)=H\Psi(x,t)\equiv\left(-rac{1}{2}\Delta+V(x)
ight)\Psi(x,t)$$

Mean field nonlinear QM - Gross-Pitaevski equation

$$i\frac{\partial}{\partial t}\Phi(x,t) = \left(-\frac{1}{2}\Delta + V(x) + g|\Phi(x,t)|^2\right)\Phi(x,t)$$

Motiva	ation				
Motivation					
Introduction O O O O O O O O O O O O O O O O O O O	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References

Many physical potentials V(x) allow Taylor expansions around their minimum

$$V(x) = rac{1}{2}V''(0)x^2 + rac{1}{6}V'''(0)x^3 + \dots$$

Often, we are only interested in the behaviour close to the minimum.

Bose-Einstein-condensate (Nobel Prize 2001, Ketterle, Cornell, Wieman)

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
00000					
Problem setting					

Schrödinger equation in units $\hbar = 1$

Consider the linear Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi(x,t) = H\Psi(x,t) \equiv \left(-\frac{1}{2}\Delta + V(x)\right)\Psi(x,t), \quad \Psi(x,0) = \Psi_0(x)$$
(1)

with the solution (1-parameter family of unitary operators exists by self-adjointness of H, c.f. Stone's theorem)

$$\Psi(\mathbf{x},t) = \mathbf{e}^{-itH}\Psi_0(\mathbf{x}) \tag{2}$$

Spectral theorem

A self-adjoint compact operator on a Hilbert space with family of eigenvalues $(\lambda)_I$ and eigenfunctions $(\phi)_I$ yields an orthogonal basis on its domain

$$\Psi(x,t) = \sum_{n \in I} e^{-it\lambda_n} \langle \phi_n | \Psi_0 \rangle \phi_n(x)$$
(3)

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
00000					
Problem setting					

Schrödinger equation in units $\hbar = 1$

Consider the linear Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi(x,t) = H\Psi(x,t) \equiv \left(-\frac{1}{2}\Delta + V(x)\right)\Psi(x,t), \quad \Psi(x,0) = \Psi_0(x)$$
(1)

with the solution (1-parameter family of unitary operators exists by self-adjointness of H, c.f. Stone's theorem)

$$\Psi(\mathbf{x},t) = \mathbf{e}^{-itH}\Psi_0(\mathbf{x}) \tag{2}$$

Spectral theorem

A self-adjoint compact operator on a Hilbert space with family of eigenvalues $(\lambda)_I$ and eigenfunctions $(\phi)_I$ yields an orthogonal basis on its domain

$$\Psi(\mathbf{x},t) = \sum_{n \in I} e^{-it\lambda_n} \langle \phi_n | \Psi_0 \rangle \phi_n(\mathbf{x})$$
(3)

Problem setting								
000000								
Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References			

The harmonic oscillator

Let H be a perturbed harmonic oscillator problems, for simplicity in 1D

$$H = -\frac{1}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega^2 x^2 + \varepsilon V(x), \quad \varepsilon \ll 1$$
(4)

The eigenfunctions of the (normalised) harmonic part are products of Gaussian exponentials with Hermite polynomials.

$$\lambda_n = \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \dots,$$
(5)

$$\phi_n = \frac{1}{\pi^{1/4}} \frac{1}{\sqrt{2^n n!}} H_n(x) e^{-x^2/2}$$
(6)

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References
Problem setting					

Hamilton operator *H* can be written

$$H = -\frac{1}{2}\rho^{2} + \underbrace{\frac{1}{2}\omega^{2}x^{2}}_{=:V_{HO}(x)} + \left(V(x,p) - \frac{1}{2}\omega^{2}x^{2}\right)$$
(7)

For small residual potentials $V - V_{HO}$ around x = 0, Hamiltonian can be regarded as a perturbed harmonic oscillator.

Example

Pöschl-Teller potential $V(x) = -\frac{1}{2m}\alpha^2 \frac{\lambda(\lambda-1)}{\cosh^2 \alpha x}$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
Overview of ex	xisting methods				
Ha	amiltonian of the	form $H = \underbrace{T + V_{HO}}_{H_{HO}}$	$2 + \varepsilon V(\mathbf{x})$		
Sp	lit as $H_{HO} + \varepsilon V$,	evolution is			

$$\Psi(x,h) = e^{-ihH}\Psi(x,0) \stackrel{e.g.}{=} e^{-ihH_{HO}}e^{-ih\varepsilon V}\Psi(x,0) + \mathcal{O}(h^2)$$

■ Rest potential V is already diagonal in coordinate space ⇒ exponential of scalars

Use the spectral theorem to diagonalise harmonic part

Fourier pseudo spectral method

Split as $T + (V_{HO} + \varepsilon V)$

- Potential is again diagonal
- Use plane wave states to evolute kinetic part via FFT

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References		
000000							
Dverview of existing methods							

Hamiltonian of the form
$$H = \underbrace{T + V_{HO}}_{H_{HO}} + \varepsilon V(x)$$

Hermite pseudo spectral method

Split as $H_{HO} + \varepsilon V$, evolution is

$$\Psi(x,h) = e^{-ihH}\Psi(x,0) \stackrel{e.g.}{=} e^{-ihH_{HO}}e^{-ih\varepsilon V}\Psi(x,0) + \mathcal{O}(h^2)$$

- Sest potential V is already diagonal in coordinate space ⇒ exponential of scalars
- Use the spectral theorem to diagonalise harmonic part

Fourier pseudo spectral method

Split as $T + (V_{HO} + \varepsilon V)$

- Potential is again diagonal
- Use plane wave states to evolute kinetic part via FFT

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
000000					
Overview of existing r	nethods				

Hamiltonian of the form
$$H = \underbrace{T + V_{HO}}_{H_{HO}} + \varepsilon V(x)$$

Hermite pseudo spectral method

Split as $H_{HO} + \varepsilon V$, evolution is

$$\Psi(x,h) = e^{-ihH}\Psi(x,0) \stackrel{e.g.}{=} e^{-ihH_{HO}}e^{-ih\varepsilon V}\Psi(x,0) + \mathcal{O}(h^2)$$

- Sest potential V is already diagonal in coordinate space ⇒ exponential of scalars
- Use the spectral theorem to diagonalise harmonic part

Fourier pseudo spectral method

Split as $T + (V_{HO} + \varepsilon V)$

- Potential is again diagonal
- Use plane wave states to evolute kinetic part via FFT

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Structure

Algebraic relations

- Algebra of classical harmonic oscillator
- Algebra of quantum harmonic oscillator
- 3 Harmonic oscillator splitting
- 4 Comparison of performance
- 5 Outlook

Definitio	nns				
Introduction 000000	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References

A *Lie-algebra* \mathfrak{g} is a vector space over some field F equipped with a *Lie-bracket*, that is a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying the following properties

- Bilinearity
- Alternating $\forall x \in \mathfrak{g} : [x, x] = 0$
- Jacobi identity $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \forall x, y, z \in \mathfrak{g}$

Let *X*, *Y* be smooth vector fields on a manifold and *f* a smooth function

$$[X, Y](f) := (XY - YX)(f)$$

Poisson bracket for smooth functions in canonical coordinates (q, p) on the phase space

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right)$$

Definitions								
ntroduction 000000	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References			

A *Lie-algebra* \mathfrak{g} is a vector space over some field F equipped with a *Lie-bracket*, that is a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying the following properties

- Bilinearity
- Alternating $\forall x \in \mathfrak{g} : [x, x] = 0$
- Jacobi identity $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \forall x, y, z \in \mathfrak{g}$

Let X, Y be smooth vector fields on a manifold and f a smooth function

$$[X, Y](f) := (XY - YX)(f)$$

Poisson bracket for smooth functions in canonical coordinates (q, p) on the phase space

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right)$$

Definitions			
Introduction Algebraic relations Harmonic oscillator splitting 000000 00 0000	Comparison of performance	Outlook 000	References

A *Lie-algebra* \mathfrak{g} is a vector space over some field F equipped with a *Lie-bracket*, that is a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying the following properties

- Bilinearity
- Alternating $\forall x \in \mathfrak{g} : [x, x] = 0$
- Jacobi identity $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 \forall x, y, z \in \mathfrak{g}$

Let X, Y be smooth vector fields on a manifold and f a smooth function

$$[X, Y](f) := (XY - YX)(f)$$

Poisson bracket for smooth functions in canonical coordinates (q, p) on the phase space

$$\{f, g\} = \sum_{i} \left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right)$$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
	0				
Algebra of classical I	narmonic oscillator				

We begin with classical mechanical systems given by the Hamiltonian

$$H=rac{1}{2}
ho^t M
ho+rac{1}{2}q^t Nq$$

with corresponding equations of motion

$$\frac{d}{dt} \begin{pmatrix} q \\ p \end{pmatrix} = J \nabla H = \begin{pmatrix} 0 & M \\ -N & 0 \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix}$$
(8)

where J is the usual symplectic structur matrix.

Commutators of kinetic T and potential V terms (1D: $m=\omega=1)$.

$$\{T,V\}=-pq$$

and nested commutators

 $\{T, \{T, V\}\} = 2T$ and $\{V, \{T, V\}\} = -2V$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
	0				
Algebra of classical I	narmonic oscillator				

We begin with classical mechanical systems given by the Hamiltonian

$$H=rac{1}{2}p^tMp+rac{1}{2}q^tNq$$

with corresponding equations of motion

$$\frac{d}{dt} \begin{pmatrix} q \\ p \end{pmatrix} = J \nabla H = \begin{pmatrix} 0 & M \\ -N & 0 \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix}$$
(8)

where J is the usual symplectic structur matrix.

Commutators of kinetic *T* and potential *V* terms (1D: $m = \omega = 1$)

$$\{T,V\}=-pq$$

and nested commutators

$$\{T, \{T, V\}\} = 2T$$
 and $\{V, \{T, V\}\} = -2V$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References			
	00							

gebra of quantum harmonic oscillator

In the quantum mechanical setting think of the momentum and space coordinates as operators. In the position space, *p* corresponds to $i\nabla_q$, i.e.

$$H=rac{1}{2}p^tMp+rac{1}{2}q^tNq$$

or equivalently, with small m, n denoting the matrix elements of M, N,

$$H = -\frac{1}{2}\sum_{i,j}m_{ij}\frac{\partial^2}{\partial x_i\partial x_j} + \frac{1}{2}\sum_{ij}n_{ij}x_ix_j$$

Commutators of kinetic T and potential V terms (1D: $\hbar = m = \omega = 1$)

$$[T,V] = -i\frac{1}{2}(pq + qp)$$

and nested commutators

$$[T, [T, V]] = -2T$$
, and $[V, [T, V]] = 2V$

Note: 1-to-1 correspondence $\{, \} \rightarrow -i[,]$ of the Poisson-Lie and the quantum harmonic oscillator Lie algebra.

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References			
	00							

Algebra of quantum harmonic oscillator

In the quantum mechanical setting think of the momentum and space coordinates as operators. In the position space, *p* corresponds to $i\nabla_q$, i.e.

$$H=rac{1}{2}
ho^t M
ho+rac{1}{2}q^t Nq$$

or equivalently, with small m, n denoting the matrix elements of M, N,

$$H = -\frac{1}{2}\sum_{i,j}m_{ij}\frac{\partial^2}{\partial x_i\partial x_j} + \frac{1}{2}\sum_{ij}n_{ij}x_ix_j$$

Commutators of kinetic *T* and potential *V* terms (1D: $\hbar = m = \omega = 1$)

$$[T,V] = -i\frac{1}{2}(pq+qp)$$

and nested commutators

$$[T, [T, V]] = -2T$$
, and $[V, [T, V]] = 2V$

Note: 1-to-1 correspondence $\{, \} \rightarrow -i[,]$ of the Poisson-Lie and the quantum harmonic oscillator Lie algebra.

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References			
	00							

In the quantum mechanical setting think of the momentum and space coordinates as operators. In the position space, *p* corresponds to $i\nabla_q$, i.e.

$$H=rac{1}{2}p^tMp+rac{1}{2}q^tNq$$

or equivalently, with small m, n denoting the matrix elements of M, N,

$$H = -\frac{1}{2}\sum_{i,j}m_{ij}\frac{\partial^2}{\partial x_i\partial x_j} + \frac{1}{2}\sum_{ij}n_{ij}x_ix_j$$

Commutators of kinetic *T* and potential *V* terms (1D: $\hbar = m = \omega = 1$)

$$[T,V] = -i\frac{1}{2}(pq+qp)$$

and nested commutators

$$[T, [T, V]] = -2T$$
, and $[V, [T, V]] = 2V$

Note: 1-to-1 correspondence $\{, \} \rightarrow -i[,]$ of the Poisson-Lie and the quantum harmonic oscillator Lie algebra.

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Structure

- 2 Algebraic relations
- Harmonic oscillator splitting
 1 dimensional case
- 4 Comparison of performance

Outlook

6 References

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
		0000			
1 dimensional case					

Exploit algebra isomorphism between the classical and quantum mechanical structure.

$$i\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \left(-\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{1}{2}x^2\right)\psi(\mathbf{x},t),\tag{9}$$

Let
$$A_1 \equiv -\frac{1}{2} \frac{\partial^2}{\partial x^2}$$
, $B_1 \equiv \frac{1}{2} x^2$, s.t. $e^{-ihA} = e^{-ih(A_1+B_1)}$.

_emma

For $h < \pi$ the following property is satisfied

$$e^{-ihA} = e^{-if(h)A_1} e^{-ig(h)B_1} e^{-if(h)A_1}$$
(10)
= $e^{-if(h)B_1} e^{-ig(h)A_1} e^{-if(h)B_1}$ (11)

where

$$g(h) = \sin(h), \qquad f(h) = \tan(h/2).$$
 (12)

Obtained by S.A. Chin et al. in a different way, PRE 72 (2005,

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
		0000			
1 dimensional case					

Exploit algebra isomorphism between the classical and quantum mechanical structure.

$$i\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \left(-\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{1}{2}x^2\right)\psi(\mathbf{x},t),\tag{9}$$

Let
$$A_1 \equiv -\frac{1}{2} \frac{\partial^2}{\partial x^2}$$
, $B_1 \equiv \frac{1}{2} x^2$, s.t. $e^{-ihA} = e^{-ih(A_1 + B_1)}$.

Lemma

For $h < \pi$ the following property is satisfied

$$e^{-ihA} = e^{-if(h)A_1} e^{-ig(h)B_1} e^{-if(h)A_1}$$
 (10)

$$= e^{-if(h)B_1} e^{-ig(h)A_1} e^{-if(h)B_1}$$
(11)

where

$$g(h) = \sin(h), \qquad f(h) = \tan(h/2).$$
 (12)

Obtained by S.A. Chin et al. in a different way, PRE 72 (2005)

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
		0000			
1 dimensional case					

On the step-size limit

Error in logarithmic scale for the integration of the HO ground state using the Fourier-Hermite method

Explanation

Quantum ground state has non-zero energy 1/2 (in appropriate units),

$$\Psi(\mathbf{x},t) = \sum_{n \in I} e^{-it(n+1/2)} \langle \phi_n | \Psi_0 \rangle \phi_n(\mathbf{x})$$

Introduction 000000	Algebraic relations	Harmonic oscillator splitting OO●O	Comparison of performance	Outlook 000	References
1 dimensional case					
Proof					

Algebra is generated by the two operators $T \equiv A$, $V \equiv B$, hence

$$e^{h/2V}e^{hT}e^{h/2V} = e^{h(T+V) - \frac{h^3}{24}([V,[V,T]] + 2[T,[V,T]]) + \cdots}$$
$$= e^{h(T+V) - \frac{h^3}{12}(-V + 2T) + \cdots}$$

Use matrix representation of classical HO algebra

$$T = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}, V = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Easy to exponentiate and match with known solution

$$e^{f(h)V}e^{g(h)T}e^{f(h)V} = \begin{pmatrix} 1 - g \cdot f & g \\ -2f + f \cdot g \cdot f & 1 - f \cdot g \end{pmatrix}$$
$$\stackrel{!}{=} e^{h(T+V)} = \begin{pmatrix} \cos h & \sin h \\ -\sin h & \cos h \end{pmatrix}$$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
		0000			
A Provide the second					

Exact decomposition - so what?

Suppose we split in harmonic part and rest $H = T + V_{HO} + \varepsilon V$, the method reads

$$\prod_{j} e^{-ia_{j}h\varepsilon V} e^{-ib_{j}hH_{HO}}$$

With the help of the lemma

$$\prod_{j} e^{-ia_{j}h\varepsilon V} e^{-if(b_{j}h)V_{HO}} e^{-ig(b_{j}h)T_{HO}} e^{-if(b_{j}h)V_{HO}}$$
$$= \prod_{j} e^{-i(a_{j}h\varepsilon V + f(b_{j}h)V_{HO})} e^{-ig(b_{j}h)T_{HO}} e^{-if(b_{j}h)V_{HO}}$$

If we expand the product, we can group the commuting terms V_{HO} and V to reduce the number of exponentials (more: FSAL).

Summary

We can compute the main contribution H_{HO} exactly (cf. spatial discretisation) and quickly via FFT.

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
		0000			
4 dimensional second					

Exact decomposition - so what?

Suppose we split in harmonic part and rest $H = T + V_{HO} + \varepsilon V$, the method reads

$$\prod_{j} e^{-ia_{j}h\varepsilon V} e^{-ib_{j}hH_{HO}}$$

With the help of the lemma

$$\prod_{j} e^{-ia_{j}h\varepsilon V} e^{-if(b_{j}h)V_{HO}} e^{-ig(b_{j}h)T_{HO}} e^{-if(b_{j}h)V_{HO}}$$
$$= \prod_{j} e^{-i(a_{j}h\varepsilon V + f(b_{j}h)V_{HO})} e^{-ig(b_{j}h)T_{HO}} e^{-if(b_{j}h)V_{HO}}$$

If we expand the product, we can group the commuting terms V_{HO} and V to reduce the number of exponentials (more: FSAL).

Summary

We can compute the main contribution H_{HO} exactly (cf. spatial discretisation) and quickly via FFT.

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
		0000			
1 dimensional ages					

Exact decomposition - so what?

Suppose we split in harmonic part and rest $H = T + V_{HO} + \varepsilon V$, the method reads

$$\prod_{j} e^{-ia_{j}h\varepsilon V} e^{-ib_{j}hH_{HO}}$$

With the help of the lemma

$$\prod_{j} e^{-ia_{j}h\varepsilon V} e^{-if(b_{j}h)V_{HO}} e^{-ig(b_{j}h)T_{HO}} e^{-if(b_{j}h)V_{HO}}$$
$$= \prod_{j} e^{-i(a_{j}h\varepsilon V + f(b_{j}h)V_{HO})} e^{-ig(b_{j}h)T_{HO}} e^{-if(b_{j}h)V_{HO}}$$

If we expand the product, we can group the commuting terms V_{HO} and V to reduce the number of exponentials (more: FSAL).

Summary

We can compute the main contribution H_{HO} exactly (cf. spatial discretisation) and quickly via FFT.

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Structure

Introduction

2 Algebraic relations

3 Harmonic oscillator splitting

- Comparison of performance
 - Gross-Pitaevskii
 - Quartic oscillator
 - Morse potential
 - Pöschl-Teller potential

5 Outlook

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Chosen methods

We compare different methods for the two splittings $(T + V_{HO}) + \varepsilon V$ and $T + (V_{HO} + \varepsilon V)$ Recall

$$\Phi_{h}^{[A+B]} = \prod_{i=1}^{3} \Phi_{a_{i}h}^{[A]} \circ \Phi_{b_{i}h}^{[B]} + \mathcal{O}\left(h^{p+1}\right)$$

 Runge-Kutta-Nyström-methods are particularly designed for the case [B, [B, [B, A]]] = 0, e.g. for Hamiltonians quadratic in kinetic energy

• Schemes for near-integrable systems, where $\varepsilon \ll 1$

e.g. cancel $\varepsilon h^3[A, [A, B]]$ but keep $h^3 \varepsilon^2[B, [B, A]]$

Composition $\tilde{\Phi}_h$ has order (s_1, s_2, \ldots) if

$$ilde{\Phi}_h - \exp(h(A + \varepsilon B)) = \mathcal{O}(\sum \varepsilon^j h^{s_j + 1})$$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Chosen methods

We compare different methods for the two splittings $(T + V_{HO}) + \varepsilon V$ and $T + (V_{HO} + \varepsilon V)$ Recall

$$\Phi_{h}^{[A+B]} = \prod_{i=1}^{s} \Phi_{a_{i}h}^{[A]} \circ \Phi_{b_{i}h}^{[B]} + \mathcal{O}\left(h^{p+1}\right)$$

 Runge-Kutta-Nyström-methods are particularly designed for the case [B, [B, [B, A]]] = 0, e.g. for Hamiltonians quadratic in kinetic energy

Schemes for near-integrable systems, where ε ≪ 1
 e.g. cancel εh³[A, [A, B]] but keep h³ε²[B, [B, A]]
 Composition Φ_h has order (s₁, s₂,...) if

$$ilde{\Phi}_h - \exp(h(A + \varepsilon B)) = \mathcal{O}(\sum \varepsilon^j h^{\mathbf{s}_j + 1})$$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Chosen methods

We compare different methods for the two splittings $(T + V_{HO}) + \varepsilon V$ and $T + (V_{HO} + \varepsilon V)$ Recall

$$\Phi_{h}^{[A+B]} = \prod_{i=1}^{n} \Phi_{a_{i}h}^{[A]} \circ \Phi_{b_{i}h}^{[B]} + \mathcal{O}\left(h^{p+1}\right)$$

- Runge-Kutta-Nyström-methods are particularly designed for the case [B, [B, [B, A]]] = 0, e.g. for Hamiltonians quadratic in kinetic energy
- Schemes for near-integrable systems, where $\varepsilon \ll 1$

e.g. cancel $\varepsilon h^3[A, [A, B]]$ but keep $h^3 \varepsilon^2[B, [B, A]]$

Composition $\tilde{\Phi}_h$ has order (s_1,s_2,\ldots) if

$$\tilde{\Phi}_h - \exp(h(A + \varepsilon B)) = \mathcal{O}(\sum \varepsilon^j h^{s_j+1})$$

Gross-Pitaevskii					
Introduction 000000	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References

The Gross-Pitaevskii equation

Describes a Bose-Einstein condensate in a harmonic trap at zero temperature

$$i\frac{\partial}{\partial t}\Phi(x,t) = \left(-\frac{1}{2m}\Delta + \frac{1}{2}m\omega^2 x^2 + g|\Phi(x,t)|^2\right)\Phi(x,t)$$

Norm preservation $|\Phi(x, t)|^2 = |\Phi(x, 0)|^2$ allows for same splitting

(proof by derivation and plugging in of GPE and its complex conjugate)

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
			0000000		
Gross-Pitaevskii					

Gross-Pitaevskii	00	0000	00000000	000	
Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
			00000000		
Gross-Pitaevskii					

Fourier split omitted - coincides with Fourier-Hermite method

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References
			00000000		
Quartic oscillator					

Quartic oscillator

Usual Schrödinger equation with potential

$$V = \frac{1}{2}m\omega^2 x^2 + \frac{1}{2}\beta x^4$$
 where $\omega = 7, m = 5, \beta = \frac{1}{8}m^2\left(\frac{\omega}{10}\right)^3 \approx 1.0719,$

Introduction 000000	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References
Morse potential					
Morse	potential				

Approximation for the vibrational states of a diatomic molecule by

mass

$$V(\mathbf{x}) = D\left(1 - e^{-\alpha \mathbf{x}}\right)^2 = D\alpha^2 \mathbf{x}^2 + \mathcal{O}((\alpha \mathbf{x})^3)$$

2⁸ grid points in [-1.5, 5], $T = 100 + \pi$

Introduction 000000	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References
Morse potential					

Error for morse potential

Inititial condition: slightly shifted exact ground state

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References	
Pöschl-Teller potential						

The potential reads

$$V(\mathbf{x}) = -\frac{1}{2m} \alpha^2 \frac{\lambda(\lambda - 1)}{\cosh^2 \alpha \mathbf{x}} = \frac{\alpha^2}{2m} \left((\alpha \mathbf{x})^2 \lambda (\lambda - 1) \right) + \mathcal{O}((\alpha \mathbf{x})^3)$$

(wavefunction not to scale)

Parameters with $\hbar = 1$	
mass	<i>m</i> = 5
width	$\alpha = 0.1$
depth	$\lambda = 6$

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook 000	References		
Pöschl-Taller potential							

Error for Pöschl-Teller potential

Inititial condition: slightly shifted Gaussian

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Structure

- 1 Introduction
- 2 Algebraic relations
- 3 Harmonic oscillator splitting
- Comparison of performance

5 Outlook

- Generalisation to higher dimensions
- Extension to shifted potentials
- Time dependence of oscillator frequency or linear disturbance

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook •••	References
Generalisation to	al case				

$$i\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \sum_{i,j} \left(-\frac{\alpha_{ij}}{2}\frac{\partial^2}{\partial x_i\partial x_j} + \frac{\beta_{ij}}{2}x_ix_j\right)\psi(\mathbf{x},t),$$
 (13)

consider the classical problem

$$\frac{d}{dt} \left\{ \begin{array}{c} q\\ p \end{array} \right\} = \left(\begin{array}{cc} 0 & M\\ -N & 0 \end{array} \right) \left\{ \begin{array}{c} q\\ p \end{array} \right\} = (A+B) \left\{ \begin{array}{c} q\\ p \end{array} \right\}$$
(14)

with M, N matrices and

$$A \equiv \left(egin{array}{ccc} 0 & M \\ 0 & 0 \end{array}
ight), \qquad \qquad B \equiv \left(egin{array}{ccc} 0 & 0 \\ -N & 0 \end{array}
ight).$$

Introduction 000000	Algebraic relations	OOOO	Comparison of performance	Outlook ○●○	References	
Extension to shifted notentials						

Shifted potentials and angular momentum

General linear inhomogeneous equation

$$\dot{\vec{x}} = A\vec{x} + \vec{b}$$
 has solution $\vec{x}(h) = e^{hA}\vec{x}_0 + A^{-1}\left(e^{hA} - I\right)\vec{b}$ (15)

Equations of motion of linearly extended Hamiltonian take form (18)

$$H = \frac{1}{2}p^{T}Mp + \frac{1}{2}q^{T}Nq + C^{T}p - D^{T}q$$

Added angular momentum

$$H = \frac{1}{2}p^{T}Mp + \frac{1}{2}q^{T}Nq + C^{T}p - D^{T}q + q^{t}Ep$$

non-symmetric composition necessary to separate momentum and space coordinates in the exponentials

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook ○○●	References		
Time dependence of oscillator frequency or linear disturbance							
Time dependent potentials							

Consider time dependence in the trap frequency

$$V = \frac{1}{2}\omega(t)^2 x^2$$

or in the linear perturbation (phase)

$$V = \frac{1}{2}\omega^2 x^2 + \Omega(t)x$$

We expect simplifications through a careful study of the algebraic implications for a Magnus integrator.

Introduction	Algebraic relations	Harmonic oscillator splitting	Comparison of performance	Outlook	References

Structure

- 2 Algebraic relations
- Harmonic oscillator splitting
- Omparison of performance
- Outlook

P. Bader, S. Blanes

On the numerical integration of the Gross-Pitaevskii equation using Hermite-Fourier methods Preprint arXiv:1007.3470v1.

S.A. Chin, E. Krotscheck Fourth-order algorithm for solving the imaginary-time GrossPitaevskii equation in a rotating anisotropic trap Phys. Rev. E 72 (2005), 036705.

S. Blanes, P.C. Moan

Practical symplectic partitioned Runge-Kutta and Runge-Kutta Nyström methods Journ. of Comp. and Apl. Mat. **142** (2002).

Robert McLachlan

Composition methods in the presence of small parameters BIT **35** (1995b).

Generalisation to higher dimensions

$$i\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \sum_{i,j} \left(-\frac{\alpha_{ij}}{2}\frac{\partial^2}{\partial \mathbf{x}_i \partial \mathbf{x}_j} + \frac{\beta_{ij}}{2}\mathbf{x}_i \mathbf{x}_j\right)\psi(\mathbf{x},t),\tag{16}$$

is equivalent to consider the classical problem

$$\frac{d}{dt} \left\{ \begin{array}{c} q\\ p \end{array} \right\} = \left(\begin{array}{cc} 0 & M\\ -N & 0 \end{array} \right) \left\{ \begin{array}{c} q\\ p \end{array} \right\} = (A+B) \left\{ \begin{array}{c} q\\ p \end{array} \right\}$$
(17)

with M, N matrices and

$$A \equiv \left(egin{array}{cc} 0 & M \ 0 & 0 \end{array}
ight), \qquad B \equiv \left(egin{array}{cc} 0 & 0 \ -N & 0 \end{array}
ight).$$

$$g(h, N, M) = M\sqrt{NM}^{-1} \sin\left(h\sqrt{NM}\right),$$
$$f(h, N, M) = \tan\left(\frac{h}{2}\sqrt{NM}\right)\sqrt{NM}M^{-1}.$$

Generalisation to higher dimensions

$$i\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \sum_{i,j} \left(-\frac{\alpha_{ij}}{2}\frac{\partial^2}{\partial \mathbf{x}_i \partial \mathbf{x}_j} + \frac{\beta_{ij}}{2}\mathbf{x}_i \mathbf{x}_j\right)\psi(\mathbf{x},t),\tag{16}$$

is equivalent to consider the classical problem

$$\frac{d}{dt} \left\{ \begin{array}{c} q\\ p \end{array} \right\} = \left(\begin{array}{cc} 0 & M\\ -N & 0 \end{array} \right) \left\{ \begin{array}{c} q\\ p \end{array} \right\} = (A+B) \left\{ \begin{array}{c} q\\ p \end{array} \right\}$$
(17)

with M, N matrices and

$$A \equiv \left(egin{array}{cc} 0 & M \ 0 & 0 \end{array}
ight), \qquad \qquad B \equiv \left(egin{array}{cc} 0 & 0 \ -N & 0 \end{array}
ight).$$

$$g(h, N, M) = M\sqrt{NM}^{-1} \sin\left(h\sqrt{NM}\right),$$
$$f(h, N, M) = \tan\left(\frac{h}{2}\sqrt{NM}\right)\sqrt{NM}M^{-1}.$$

Extension to shifted potentials

General linear inhomogeneous equation

$$\dot{\vec{x}} = A\vec{x} + \vec{b}$$
 has solution $\vec{x}(h) = e^{hA}\vec{x}_0 + A^{-1}\left(e^{hA} - I\right)\vec{b}$ (18)

Equations of motion of linearly extended Hamiltonian take form (18)

$$H = \frac{1}{2} p^T M p + \frac{1}{2} q^T N q + C^T p - D^T q$$

_emma

For M, N spd and simultanously diagonalisable, the following property is satsfied

$$e^{-ihH} = e^{-i\left(\frac{1}{2}q^{T}F_{h}q - D^{T}F_{h}q\right)} e^{-i\left(\frac{1}{2}p^{T}G_{h}p + C^{T}G_{h}p\right)} e^{-i\left(\frac{1}{2}q^{T}F_{h}q - D^{T}F_{h}q\right)}$$

where, as before,

$$G_h = M\sqrt{NM}^{-1}\sin\left(h\sqrt{NM}\right), \qquad F_h = \tan\left(\frac{h}{2}\sqrt{NM}\right)\sqrt{NM}M^{-1}.$$

Extension to shifted potentials

General linear inhomogeneous equation

$$\dot{\vec{x}} = A\vec{x} + \vec{b}$$
 has solution $\vec{x}(h) = e^{hA}\vec{x}_0 + A^{-1}\left(e^{hA} - I\right)\vec{b}$ (18)

Equations of motion of linearly extended Hamiltonian take form (18)

$$H = \frac{1}{2}p^{T}Mp + \frac{1}{2}q^{T}Nq + C^{T}p - D^{T}q$$

Lemma

For M, N spd and simultanously diagonalisable, the following property is satsfied

$$\mathbf{e}^{-ihH} = \mathbf{e}^{-i\left(\frac{1}{2}\mathbf{q}^{\mathsf{T}}F_{h}\mathbf{q}-D^{\mathsf{T}}F_{h}\mathbf{q}\right)} \mathbf{e}^{-i\left(\frac{1}{2}p^{\mathsf{T}}G_{h}p+C^{\mathsf{T}}G_{h}p\right)} \mathbf{e}^{-i\left(\frac{1}{2}\mathbf{q}^{\mathsf{T}}F_{h}q-D^{\mathsf{T}}F_{h}q\right)}$$

where, as before,

$$G_h = M\sqrt{NM}^{-1}\sin\left(h\sqrt{NM}\right), \qquad F_h = \tan\left(\frac{h}{2}\sqrt{NM}\right)\sqrt{NM}M^{-1}.$$

Proof

The generator of the Lie-algebra includes now more terms, for which we compute the composition in the associated Lie-group. As before, we split in easily solvable terms

$$\begin{aligned} H_{A} &= \frac{1}{2} F_{h} q^{2} + \alpha(h) q \quad \Rightarrow \begin{cases} q(h) \\ p(h) \end{cases} = \begin{cases} q_{0} \\ p_{0} - hF_{h} - h\alpha(h) \end{cases} \equiv \Phi_{h}^{A}(q_{0}, p_{0}) \\ H_{B} &= \frac{1}{2} G_{h} p^{2} + \beta(h) p \quad \Rightarrow \begin{cases} q(h) \\ p(h) \end{cases} = \begin{cases} q_{0} + hG_{h} + h\beta(h) \\ p_{0} \end{cases} \equiv \Phi_{h}^{B}(q_{0}, p_{0}) \end{aligned}$$

and require the symmetric composition

$$\Psi_{h}(q_{0}, p_{0}) = \Phi_{h/2}^{A} \circ \Phi_{h}^{B} \circ \Phi_{h/2}^{A}(q_{0}, p_{0})$$
(19)

to match the exact solution. Functions F, G, α , β have been added to account for the increased complexity of the algebraic structure. Computing (19) and matching the coefficients with the exact solution (18) yields the solution.

Proof

The generator of the Lie-algebra includes now more terms, for which we compute the composition in the associated Lie-group. As before, we split in easily solvable terms

$$\begin{aligned} H_{A} &= \frac{1}{2} F_{h} q^{2} + \alpha(h) q \quad \Rightarrow \begin{cases} q(h) \\ p(h) \end{cases} = \begin{cases} q_{0} \\ p_{0} - hF_{h} - h\alpha(h) \end{cases} \equiv \Phi_{h}^{A}(q_{0}, p_{0}) \\ H_{B} &= \frac{1}{2} G_{h} p^{2} + \beta(h) p \quad \Rightarrow \begin{cases} q(h) \\ p(h) \end{cases} = \begin{cases} q_{0} + hG_{h} + h\beta(h) \\ p_{0} \end{cases} \equiv \Phi_{h}^{B}(q_{0}, p_{0}) \end{aligned}$$

and require the symmetric composition

$$\Psi_h(q_0, p_0) = \Phi^A_{h/2} \circ \Phi^B_h \circ \Phi^A_{h/2}(q_0, p_0)$$
(19)

to match the exact solution. Functions F, G, α, β have been added to account for the increased complexity of the algebraic structure. Computing (19) and matching the coefficients with the exact solution (18) yields the solution.

Thank you for your attention