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Introduction
In our differential equations we deal with general operators:

∂tu = Au + Bu, u(0) = u0, (1)

where A, B are non-commuting operators.
For example we could consider a hyperbolic equations of the
form

∂tu = Ãux + B̃uy , u(x , y , 0) = u0(x , y), (2)

where Ã, B̃ are non-commuting matrices or also in the spatial
discretised form, where we assume to apply characteristics
methods.
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Further we can also think about a dynamical system:

∂tu(q, p) =
(∂u

∂q
· ∂H

∂p
− ∂u

∂p
· ∂H

∂q

)
= (A + B)u(q, p). (3)

For a separable Hamiltonian,

H(p, q) =
p2

2m
+ V (q), (4)

A and B are Lie operators, or vector fields

A = v · ∂

∂q
B = a(q) · ∂

∂v
(5)

where we have abbreviated v = p/m and a(q) = −∇V (q)/m.
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To solve the problems, we deal with the time-stepping operator

exp h(A + B) (6)

which we assume to decompose in the following schemes:
1.) Single product splitting is given as:

eh(A+B) =
∏

i

eai hAebi hB, (7)

and symplectic integrators can be derived of this schemes,
2.) Multi-product expansion (MPE),

eh(A+B) =
∑

k

ck

∏
i

eaki hAebki hB (8)

which will be the basis of general Nyström integrators and
extrapolation scheme of given time-integrators.
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Motivation

Single product splitting:
Advantage of a single product splitting is that the resulting
algorithms are structure-preserving, such as being
symplectic, unitary, or remain within the group manifold.
Beyond the second-order requires exponentially growing
number of operators
Problems with unavoidable negative coefficients and
cannot be applied to time-irreversible or semi-group
problems (modifications are done in complex coefficients,
but are also hardly to apply, see analytical semigroups)
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Multi product splitting:
Advantage is a faster algorithms, e.g.
Symplectic algorithms of orders 4, 6, 8 and 10, required a
minimum of 3, 7, 15 and 31 force-evaluations
MPE algorithms of orders 4, 6, 8, 10, only require 3, 5, 10,
15 force evaluations
MPE has a advantage in many practical calculations where
long term accuracy and structure preserving is not an
issue (fast computation of large time intervals).
Advantages are in long term evaluation, where structure
preserving problems are not so important.
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Introduction to Multi-product expansion
The multi-product decomposition (8) is obviously more
complicated than the single product splitting (7).
We concentrate on lower order kernels for our multi-product
expansion (e.g. first or second order).
But such a product is easy to construct, because every left-right
symmetric single product is second-order. Let TS(h) be such a
product with

∑
i aki = 1 and

∑
i bki = 1, then TS(h) is

time-symmetric by construction,

TS(−h)TS(h) = 1, (9)

implying that it has only odd powers of h

TS(h) = exp(h(A + B) + h3E3 + h5E5 + · · · ) (10)

and therefore correct to second-order.
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(The error terms Ei are nested commutators of A and B
depending on the specific form of TS.) This immediately
suggests that the k th power of TS at step size h/k must have
the form

T k
S (h/k) = exp(h(A + B) + k−2h3E3 + k−4h5E5 + · · · ), (11)

and can serve as a basis for the multi-production expansion (8).
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Even-order MPE

The simplest such symmetric product is

T2(h) = SAB(h) or T2(h) = SBA(h), (12)

where
SAB(h) = e(h/2)BehAe(h/2)B. (13)

is a second order scheme and commuting A and Bwe have the
same with SBA.
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Only a simple Richardson Extrapolation can only reach one
order more, see:
If one naively assumes that

T2(h) = eh(A+B) + Ch3 + Dh4 + · · · , (14)

then a Richardson extrapolation would only give

1
k2 − 1

[
k2T k

2 (h/k)− T2(h)
]

= eh(A+B) + O(h4), (15)

a third-order algorithm.
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However, because the error structure of T2(h/k) is actually
given by (11), one has

T k
2 (h/k) = eh(A+B)+k−2h3E3+

1
2

k−2h4[(A+B)E3+E3(A+B)]+O(h5),

(16)
and both the third and fourth order errors can be eliminated
(one can skip the higher order terms by an extrapolation).
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We can derive a fourth-order algorithm.
Similarly, the leading 2n + 1 and 2n + 2 order errors are
multiplied by k−2n and can be eliminated at the same time.
Thus for a given set of n whole numbers {ki} one can have a
2n-th-order approximation

eh(A+B) =
n∑

i=1

ciT ki
2

(
h
ki

)
+ O(h2n+1). (17)
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We can derive the following ci satisfy the simple Vandermonde
equation:


1 1 1 . . . 1

k−2
1 k−2

2 k−2
3 . . . k−2

n

k−4
1 k−4

2 k−4
3 . . . k−4

n
. . . . . . . . . . . . . . .

k−2(n−1)
1 k−2(n−1)

2 k−2(n−1)
3 . . . k−2(n−1)

n




c1
c2
c3
. . .
cn

 =


1
0
0
. . .
0


(18)
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This equation has closed form solutions [see Chin2008] for all n

ci =
n∏

j=1( 6=i)

k2
i

k2
i − k2

j
. (19)

The natural sequence {ki} = {1, 2, 3, ... , n} produces a
2n-th-order algorithm with the minimum n(n + 1)/2 evaluations
of T2(h). For orders four to ten, one has explicitly:

T4(h) = −1
3
T2(h) +

4
3
T 2

2

(
h
2

)
(20)

T6(h) =
1
24
T2(h)− 16

15
T 2

2

(
h
2

)
+

81
40
T 3

2

(
h
3

)
(21)

T8(h) = − 1
360

T2(h)+
16
45
T 2

2

(
h
2

)
−729

280
T 3

2

(
h
3

)
+

1024
315

T 4
2

(
h
4

)
(22)
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Remark
In [Chin2008] is is shown that T4(h) reproduces Nyström’s
fourth-order algorithm with three force-evaluations and T6(h)
yielded a new sixth-order Nyström type algorithm with five
force-evaluations.
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Remark
The idea of extrapolating symplectic algorithms has been
previously considered by Blanes, Casas and Ros in 1999 and
Chan and Murua in 2000.
They studied the case of extrapolating an 2n-order symplectic
integrator, but did not obtain analytical forms for their expansion
coefficients.
By the way they extrapolating a 2n-order symplectic integrator
will preserve the symplectic character of the algorithm to order
4n + 1, (e.g. 2nd order kernel, preserves to 5th order
extrapolation schemes).
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Odd-order MPE

For the odd-order MPE we can derive arbitrary odd-order
Nyström algorithms.
First we have to apply a h2-order basis, given as:

Un(h) = e
h

2n−1 A(e
2h

2n−1 Be
2h

2n−1 A)n−1e
h

2n−1 B (23)

has the remarkable property that it effectively behaves as if

Un(h) = exp[h(A + B) + x−2(h2F2 + h3F3) (24)
+x−4(h4F4 + h5F5) + · · · ]

where x = (2n − 1).
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Same idea is used as in the even order case and we skip the
2n and 2n + 1 order errors.
In this case (25) can be extrapolated as

eh(A+B) =
n∑

i=1

c̃iUi(h) + O(h2n), (25)

where c̃i satisfies the same Vandermonde equation (18), with
the same solution (19), but with {ki} consists of only odd whole
numbers.

Jürgen Geiser, Humboldt Universität zu Berlin, Germany ”A Symposium on Splitting Methods”



Outline of the Talk
Introduction to MPE methods

Errors and convergence of the Multi-product expansion
Generalization

Analytical and numerical verifications
Conclusions

The first few odd order decompositions corresponding to {ki}
being {1, 3}, {1, 3, 5}, {1, 3, 5, 7} and {1, 3, 5, 7, 9} are:

T3(h) = −1
8
U1(h) +

9
8
U2(h) (26)

T5(h) =
1

192
U1(h)− 81

128
U2(h) +

625
384

U3(h) (27)

T7(h) = − 1
9216

U1(h)+
729
5120

U2(h)−15625
9216

U3(h)+
117649
46080

U4(h)

(28)

T9(h) =
1

737280
U1(h)− 729

40960
U2(h) +

390625
516096

U3(h)

−5764801
1474560

U4(h) +
4782969
1146880

U5(h). (29)
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Errors and convergence of the Multi-product
expansion

The analysis is based on a general framework for unbounded
operators, here we discuss with respect to bounded operators,
see [Hansen and Ostermann 2008].
Analysis of the even-order kernel T2
We will assume that at sufficient small h, the Strang splitting is
bounded as follow:

||T2(h)|| = ||exp(
1
2

hD) exp(hA(t)) exp(
1
2

hD)|| ≤ exp(cωh),

(30)
with c only depend on the coefficients of the method and ω is a
positive number, see the work of convergence analysis on this
splitting by Janke and Lubich in 2000.
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We can then derive the following convergence results for the
multi-product expansion.

Theorem
For the numerical solution of (1), we consider the MPE
algorithm (17) of order 2n. Further we assume the error
estimate in equation (30), then we have the following
convergence result:

||
(
Sm − exp(mh(A(t) + D))

)
u0|| ≤ C O(h2n+1), mh ≤ tend ,

(31)
where S =

∑n
i=1 ciT ki

2 ( h
ki

) and C is to be chosen uniformly on
bounded time intervals and independent of m and h for
sufficient small h.
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Proof.
We apply the telescopic identity and obtain:(

Sm − exp(mh(A(t) + D))
)

u0 =

m−1∑
ν=0

Sm−ν−1(S − exp(h(A(t) + D))) exp(νh(A(t) + D))u0,

where S =
∑n

i=1 ciT ki
2 ( h

ki
)
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We apply the error estimate in (30) to obtain the stability
requirement:

||
n∑

i=1

ciT ki
2 (

h
ki

)|| ≤ exp(cωh). (32)

Assuming the consistency of

||
n∑

i=1

ciT ki
2 (

h
ki

)− exp(h(A + D))|| ≤ CO(h2n+1), (33)

we have the following error bound:

||
(
Sm − exp(mh(A(t) + D))

)
u0|| ≤ CO(h2n+1), mh ≤ tend .

(34)
The consistency of the error bound is derived in the following
theorem.

Jürgen Geiser, Humboldt Universität zu Berlin, Germany ”A Symposium on Splitting Methods”



Outline of the Talk
Introduction to MPE methods

Errors and convergence of the Multi-product expansion
Generalization

Analytical and numerical verifications
Conclusions

Theorem
For the numerical solution of (1), we have the following
consistency:

||
n∑

i=1

ciT ki
2 (

h
ki

)− exp(h(A + D))|| ≤ CO(h2n+1). (35)
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Proof.
Based on the derivation of the coefficients via the
Vandermonde equation the product is bounded and we have:

n∑
k=1

ckT k
2 (

h
k

) =
n∑

k=1

ck
(

exp((A + D)h) (36)

−(k−2h3E3 + k−4h5E5 + . . .)
)

, (37)

=
n∑

k=1

ck

(
exp((A + D)h)−

n∑
i=1

k−2ih2i+1E2i+1

)
,

= ( exp((A + D)h)−
n∑

k=1

ck

n∑
i=1

k−2ih2i+1E2i+1 ) = O(h2n+1),

where the coefficients are given in (19).
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Lemma
We assume ||A(t)|| to be bounded in the interval t ∈ (0, tend).
Then T2 is non-singular for sufficient small h.

Proof.
We use our assumption ||A(t)|| is to be bounded in the interval
0 < t < tend .
So we can find ||A(t)|| < C for 0 < t < tend , where C ∈ R+ a
bound of operator A(t) independent of t .
Therefore T2 is always non-singular for sufficiently small h.
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Analysis of the odd-order kernel Un

Lemma
We will assume that for sufficiently small h, the Burstein and
Mirin’s decomposition is bounded as follow:

||Un(h)|| = ||e
h

2n−1 A(t)(e
2h

2n−1 De
2h

2n−1 A(t))n−1e
h

2n−1 D|| ≤ exp(cωh), ∀t ≥ 0,

with c only dependent on the coefficients of the method and ω
is a positive number.
The proof follows by rewriting equation (38) as a product of the
Strang and the A-B splitting schemes:
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Proof.
Equation (38) can be rewritten as:

e
h

2n−1 A(t)(e
2h

2n−1 De
2h

2n−1 A(t))n−1e
h

2n−1 D (38)

=
(
e

h
2n−1 A(t)e

2h
2n−1 De

h
2n−1 A(t)

)n−1
e

h
2n−1 A(t)e

h
2n−1 D, ∀t ≥ 0,

The error bound and underlying convergence analysis for both
the Strang and the A-B splitting have been previously studied
by Jahnke and Lubich [Jahnke, Lubich 2000].
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We assume the following derivation of the higher order MPE:

Assumption
We assume the following higher order decomposition,

eh(A+D) =
n∑

i=1

c̃i Ui(h) + O(h2n), (39)

where c̃i are derived based on the Vandermonde equation (18)
with {ki} being a set of odd whole numbers.
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We can then derive the following convergence results for the
multi-product expansion.

Theorem
For the numerical solution of (1), we consider the Assumption 3
of order 2n − 1 and we apply Lemma 4, then we have a
convergence result given as:

||
(
Sm − exp(mh(A(t) + D))

)
u0|| ≤ CO(h2n), mh ≤ tend , (40)

with n = 1, 2, 3, . . ., and where S =
∑n

i=1 c̃iUi(h) and C is to be
chosen uniformly on bounded time intervals and independent of
m and h for sufficient small h.

Proof.
We apply the same proof ideas as for the even case.

Jürgen Geiser, Humboldt Universität zu Berlin, Germany ”A Symposium on Splitting Methods”



Outline of the Talk
Introduction to MPE methods

Errors and convergence of the Multi-product expansion
Generalization

Analytical and numerical verifications
Conclusions

Theorem
For the numerical solution of (1), we have the following
consistency:

||
n∑

i=1

c̃i Ui(h)− exp(h(A + D))|| ≤ CO(h2n). (41)

Proof.
The same proof ideas can be followed after the proof of
Theorem 2.

Remark
The same proof idea can be used to generalize the higher
order schemes.
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Generalization

In the generalization, we discuss the construction with respect
to higher order kernel functions. The expansion coefficients ci
are determined by a specially simple Vandermonde equation,
where the generalization can be done by a modification in the
coefficients.
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a.) Generalization to even kernels:
Here we can construct extrapolations with the kernels: T2, T4, T6
etc., i.e. m = 0, 1, 2, . . .

Lemma
The closed form of the coefficients for the extrapolation is given
as
with closed form solutions

ci =
k2m

i∑n
j=1 k2

j

n∏
j=1( 6=i)

k2
i

k2
i − k2

j
, (42)
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and error coefficient,

e2m+2n+1 = (−1)n−1 k2m
i∑n

j=1 k2
j

n∏
i=1

1
k2

i
(43)

Here we have closed forms (42) and (46) and are the keys to
the multi-product expansion and its error analysis.
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Proof.
The proof is done with the Vandermonde equation:


1 1 1 . . . 1

k−2m−2
1 k−2m−2

2 k−2m−2
2 . . . k−2m−2

n

k−2m−4
1 k−2m−4

2 k−2m−4
2 . . . k−2m−4

n
. . . . . . . . . . . . . . .

k−2m−2n
1 k−2m−2n

2 k−2m−2n
2 . . . k−2m−2n

n




c1
c2
c3
. . .
cn

 =


1
0
0
. . .
0


(44)

Complete induction with the assumption of equation (42) is
followed.
We start with n=1, n=2, n=3.
The induction step with n → n + 1, with the assumption of
equation (42).
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b.) Generalization to odd and prime number
kernels:

Here we can construct extrapolations with the kernels: T2, T3, T5
etc., i.e. m = 0, 1, 2, . . .

Lemma
The closed form of the coefficients for the extrapolation is given
as
with closed form solutions

ci =
ka m

i∑n
j=1 ka

j

n∏
j=1( 6=i)

ka
i

ka
i − ka

j
(45)
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and error coefficient,

ea m+a n+1 = (−1)n−1 ka m
i∑n

j=1 ka
j

n∏
i=1

1
ka

i
(46)

Here we have closed forms (45) and (46) and are the keys to
the multi-product expansion and its error analysis.
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Proof.
The proof is also done with the Vandermonde equation:


1 1 1 . . . 1

k−am−a
1 k−am−a

2 k−am−a
2 . . . k−am−a

n

k−am−2a
1 k−am−2a

2 k−am−2a
2 . . . k−am−2a

n
. . . . . . . . . . . . . . .

k−am−an
1 k−am−an

2 k−am−an
2 . . . k−am−an

n




c1
c2
c3
. . .
cn

 =


1
0
0
. . .
0


(47)

Complete induction with the assumption of equation (45) is
followed.
We start with n=1, n=2, n=3.
The induction step with n → n + 1, with the assumption of
equation (45).
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The higher order extrapolation allows to start with more
accurate Kernels. The higher accuracy starts in a higher order
form.

Example
A 8th order algorithm from an even 4th order kernel function is
given as:

c1 =
k6

1

(k2
1 − k2

2 )(k2
1 − k2

3 )(k2
1 + k2

2 + k2
3 )

(48)

c2 =
k6

2

(k2
2 − k2

1 )(k2
2 − k2

3 )(k2
1 + k2

2 + k2
3 )

(49)

c3 =
k6

3

(k2
3 − k2

1 )(k2
3 − k2

2 )(k2
1 + k2

2 + k2
3 )

(50)

Remark
While Magnus expansion are designed as nice higher order
splitting methods, they have also some drawbacks. One of a
fundamental weakness of the Magnus approach is that when
we apply time integration, we ended up with many terms and all
of them are still in the exponential. When we apply to split
them, we reach all these terms into individual exponentials.
The splitting is then far more laborious than Suzuki’s method,
while having only two operators to split.
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Multiproduct expansion as generator for Nyström
algorithms (Application to Hamiltonian problems)

Traditional results on Nyström integrators can be much more
simply derived and understood on the basis of multi-product
splitting. In fact, we have the following theorem

Theorem
Every decomposition of eh(A+B) in the form of∑

k

ck

∏
i

eaki hAebki hB = eh(A+B) + O(hn+1), (51)

where A and B are non-commuting operators, with real
coefficients {ck , aki , bki} and finite indices k and i, produces a
nth-order Nyström integrator.
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The splitting T3(h) explains the original form of Burstein and
Mirin’s decomposition and Nyström’s third-order algorithm. The
splitting T5(h) again produces, without any tinkering, Nyström’s
fifth-order integrators with four force-evaluations:

q = q0 + hv0 +
h2

192

[
23a0 + 75a2/5 − 27a2/3

+25a4/5

]
(52)

v = v0 +
h

192

[
23a0 + 125a2/5 − 81a2/3 + 125a4/5

]
, (53)
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Further we have given ai/k = a(qi/k ) with

q2/5 = q0 +
2
5

hv0 +
2

25
h2a0

q2/3 = q0 +
2
3

hv0 +
2
9

h2a0

q4/5 = q0 +
4
5

hv0 +
4

25
h2(a0 + a2/5) (54)
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Analytical and numerical verifications

In this section, we discuss the application of both the even and
odd order MPE algorithms.

Remark
For a single product splitting, there are no known splittings that
are exact in the limit of large number of operators. Even in the
case of the Zassenhaus formula, it is non-trivial to compute the
higher order products, not to mention evaluating them. For this
purpose, we turn to the much studied Magnus expansion,
where the exact limit can be computed in simple cases.
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Numerical Experiments
Example 1: Benchmark 10× 10 ODE system (Starting kernel)
We deal in the first with an ODE and separate the complex
operator in two simpler operators.
We deal with the 10× 10 ODE system:

∂tu1 = −λ1,1(t)u1 + λ2,1(t)u2 + · · ·+ λ10,1(t)u10, (55)
∂tu2 = λ1,2(t)u1 − λ2,2(t)u2 + · · ·+ λ10,2(t)u10 , (56)

... (57)
∂tu10 = λ1,10(t)u1 + λ2,10(t)u2 + · · · − λ10,10(t)u10 , (58)
u1(0) = u1,0, . . . , u10(0) = u10,0 (initial conditions) , (59)

where λ1,1(t), . . . , λ10,10(t) are the decay factors and
u1,0, . . . , u10,0 ∈ R+. We have the time-interval t ∈ [0, T ].
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We rewrite the equation (55) in operator notation, we
concentrate us to the following equations :

∂tu = A(t)u + B(t)u , (60)

where u1(0) = u10 = 1.0 , u2(0) = u20 = 1.0 are the initial
conditions, where we have λ1(t) = t and λ2(t) = t2.
and our spitted operators are

A =

 −λ1,1(t) . . . λ10,1(t)
λ1,5(t) . . . λ10,5(t)

0 . . . 0

 , B =

 0 0
λ1,6(t) . . . λ10,6(t)
λ1,10(t) . . . −λ10,10(t)

 .

(61)
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The parameters are given as:

λ1,1(t) = 0.09λ1(t), λ2,1(t) = 0.01λ2(t), . . . , λ10,1(t) = 0.01λ2(t)
...
λ1,10(t) = 0.01λ2(t), . . . λ9,10(t) = 0.01λ2(t), . . . , λ10,10(t) = 0.09λ1(t).

The higher order schemes with method with a fourth order
kernel is presented in Figure 1. We see the same bahaviour as
for lower ODE systems. With higher order schemes, we can
really accelerate the convergence rates to machine precision,
which is about 10−13. Accelarations are obtained with second
order method.
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We tested at least to 4th order kernel for the MPE method.
Often higher order kernels are delicate to compute and fail in
accuracy (Optimal are first and second order kernels).

10
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10
−16

10
−15

10
−14

10
−13

∆t

er
r L1

c
1

c
2

c
3

c
4

Figure: Numerical errors of the starting kernels (1st (A-B kernel), 2nd
(Strang kernel), 3rd (Strang + Richardson), 4th ([Chin 2008]), x-axis:
time, y-axis: max-error (we reach also accuracy of the computer).

Remark
In the numerical experiment we have compared different higher
order schemes. With higher order kernels as starting scheme
for the extrapolation, we have obtained the best results.
Additionally extrapolation steps are cheap to do and increase to
higher order schemes.
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Example 2: The non-singular matrix case
To assess the convergence of the Multi-product expansion with
that of the Magnus series, consider the well known example
[moan 2008] of

A(t) =

(
2 t
0 −1

)
. (62)

The exact solution to (1) with Y (0) = I is

Y (t) =

(
e2t f (t)
0 e−t

)
, (63)
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with

f (t) =
1
9
e−t(e3t − 1− 3t) (64)

=
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420
(65)

+
31t8

40320
+

t9

6720
+

13t10

403200
+

13t11

178200
(66)
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For the Magnus expansion, one has the series

Ω(t) =

(
2t g(t)
0 −t

)
, (67)

with, up to the 10th order,

g(t) =
1
2

t2 − 1
4

t3 +
3

80
t5 − 9

1120
t7 +

81
44800

t9 + · · · (68)

→ t(e3t − 1− 3t)
3(e3t − 1)

. (69)

Exponentiating (67) yields (63) with

f (t) = te−t(e3t − 1)

(
1
6
− 1

12
t +

1
80

t3 − 3
1120

t5 +
27

44800
t7 + · · ·

)
→ te−t(e3t − 1)

(
1
9t
− 1

3(e3t − 1)

)
(70)
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The multi-product expansion suffers no such drawbacks.
By setting h = t and t = 0, we have

T2(t) = exp
[
t
(

2 1
2 t

0 −1

)]
=

(
e2t f2(t)
0 e−t

)
(71)

with
f2(t) =

1
6

te−t(e3t − 1). (72)
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This is identical to first term of the Magnus series (70) and is an
entire function of t . Since higher order MPE uses only powers
of T2, higher order MPE approximations are also entire
functions of t . Thus up to the 10th order, one finds

f4(t) = te−t

(
e3t − 5

18
+

2e3t/2

9

)
(73)

f6(t) = te−t
(

11e3t − 109
360

+
9

40
(e2t + et)− 8

45
e3t/2

)
(74)
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f8(t) = te−t
(

151e3t − 2369
7560

+
256
945

(e9t/4 + e3t/4) (75)

− 81
280

(e2t + et) +
104
315

e3t/2
)

f10(t) = te−t
(

15619e3t − 347261
1088640

+
78125
217728

(e12t/5 + e9t/5

+e6t/5 + e3t/5)− 4096
8505

(e9t/4 + e3t/4) +
729
4480

(e2t + et)

−4192
8505

e3t/2
)

. (76)
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When expanded, the above yields

f2(t) =
t2

2
+

t3

4
+ · · ·

f4(t) =
t2

2
+

t4

8
+

5t5

192
+ · · ·

f6(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

384
+ · · ·

(77)
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f8(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420
+

31t8

40320

+
1307t9

8601600
+ · · · (78)

f10(t) =
t2

2
+

t4

8
+

t5

60
+

t6

80
+

t7

420
+

31t8

40320
+

t9

6720

+
13t10

403200
+

13099t11

232243200
+ · · · (79)

and agree with the exact solution to the claimed order.
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Figure: The black line is the exact result (64). The blue lines are the
Magnus fourth to tenth order results (70), which diverge from the
exact result beyond t > 2. The red lines are the multi-product
expansions. The purple line is their common second order result.
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Results:
The Magnus series (68) and (70) only converge for |t | < 2

3π due
to the pole at t = 2

3πi .
The MPE series convergences uniform for all t .
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Experiment 3: The radial Schödinger equation
We consider the radial Schrödinger equation

∂2u
∂r2 = f (r , E)u(r) (80)

where

f (r , E) = 2V (r)− 2E +
l(l + 1)

r2 , (81)

By relabeling r → t and u(r) → q(t), (80) can be viewed as
harmonic oscillator with a time dependent spring constant

k(t , E) = −f (t , E) (82)
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and Hamiltonian

H =
1
2

p2 +
1
2

k(t , E)q2. (83)

Thus any eigenfunction of (80) is an exact time-dependent
solution of (83). For example, the ground state of the hydrogen
atom with l = 0, E = −1/2 and

V (r) = −1
r

(84)

yields the exact solution

q(t) = t exp(−t) (85)

with initial values q(0) = 0 and p(0) = 1.
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Denoting

Y (t) =

(
q(t)
p(t)

)
, (86)

the time-dependent oscillator (83) now corresponds to

A(t) =

(
0 1

f (t) 0

)
=

(
0 1
0 0

)
+

(
0 0

f (t) 0

)
≡ T + V (t), (87)

with
f (t) = (1− 2

t
). (88)
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In this case, the second-order midpoint algorithm is

T2(h, t) = e
1
2 hT ehV (t+h/2)e

1
2 hT

=

(
1 + 1

2h2f (t + 1
2h) h + 1

4h3f (t + 1
2h)

hf (t + 1
2h) 1 + 1

2h2f (t + 1
2h),

)
(89)

and for q(0) = 0 and p(0) = 1, (setting t = 0 and h = t),
correctly gives the second order result,

q2(t) = t +
1
4

t3f (
1
2

t) = t − t2 +
1
4

t3. (90)
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Higher order multi-product expansions, using (89), then yield

q4(t) = t − t2 +
7t3

18
− t4

9
+

t5

96

q6(t) = t − t2 +
211t3

450
− 31t4

225
+

17t5

600
+ · · ·

q8(t) = t − t2 +
32233t3

66150
− 5101t4

33075
+

3139t5

88200
+ · · ·

q10(t) = t − t2 +
88159t3

1786050
− 143177t4

893025
+

91753t5

2381400
+ · · ·
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Figure: The uniform convergence of the multi-product expansion in
solving for the hydrogen ground state wave function. (Black line:
exact ground state wave function, The numbers indicates the order of
the MPE. Blue lines: various fourth-order algorithms.
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Remarks:
While wel-known higher order splitting method, as FR
(Forest-Ruth 1990, 3 force-evaluations), M (McLachlan 1995, 4
force-evaluations), BM (Blanes-Moan 2002, 6
force-evaluations), Mag4 (Magnus integrator, see below, ≈ 2.5
force-evaluations) leaks with the accuracy, MPE series up to
the 100th order, matches against the exact solution and 4B
[Chin 2006] (a forward symplectic algorithm with only ≈ 2
evaluations).
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Figure: A precision-effort comparison of various fourth-order
algorithms with that of MPE for computing the ground state of a
spiked harmonic oscillator. N is the number of force-evaluations.
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Conclusions

Alternative method: MPE of operators together with
Suzuki’s rule of incorporating the time-ordered exponential
for solving differential equations
MPE method is compared with Magnus expansion with
different kernels and found that MPE converges uniformly.
MPE requires far less operators at higher orders than
either the Magnus series or conventional
exponential-splitting.

In the future we will focus on applying MPE method for solving
nonlinear differential equations and applications to
advection-diffusion problems (next adjoint work with S.Chin).
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